
Entropy compression: algorithmic Lovász Local Lemma
and graph coloring

Anqi Li

1 Introduction and overview

In this article, we introduce the method of entropic compression, which first arose in Moser’s [Mos09]
constructive proof of the Lovász Local Lemma (LLL). The entropic compression method has found many
applications elsewhere, of which there are too many to enumerate. We focus on the constructive algo-
rithmic (LLL) and graph list coloring application in this article.

In both of our applications, we will describe a recursive “modified rejection sampling” algorithm
which upon termination produces a solution to our problem. The hard part is demonstrating that the
algorithm terminates in a short amount of time and this is where the entropic compression argument
comes in. Vaguely speaking, the entropic compression argument (a term coined by Terry Tao in his
blogpost [Tao10] on Moser’s algorithmic LLL) is a sort of information theoretic monotonicity property
to guarantee that a recursive procedure terminates in a finite amount of time. I cannot summarize the
gist of the argument better than Terry Tao, so here is a quote from his blog that summarizes how the
entropic compression argument works.

[The entropic compression argument] applies to probabilistic algorithms which require
a certain collection R of random “bits” as part of the input, thus each loop of the al-
gorithm takes an object A(which may also have been generated randomly) and some
portion of the random string R to (deterministically) create a better object A′ (and a
shorter random string R′, formed by throwing away those bits of R that were used in
the loop). The key point is to design the algorithm to be partially reversible, in the sense
that given A′ and R′ and some additional data H ′ that logs the cumulative history of
the algorithm up to this point, one can reconstruct A together with the remaining por-
tion R not already contained in R′. Thus, each stage of the argument compresses the
information-theoretic content of the string A+R into the string A+R′+H ′ in a lossless
fashion. However, a random variable such as A + R cannot be compressed losslessly
into a string of expected size smaller than the Shannon entropy of that variable. Thus, if
one has a good lower bound on the entropy of A+ R, and if the length of A′ + R′ +H ′

is significantly less than that of A+R (i.e. we need the marginal growth in the length of
the history file H ′ per iteration to be less than the marginal amount of randomness used
per iteration), then there is a limit as to how many times the algorithm can be run, much
as there is a limit as to how many times a random data file can be compressed before no
further length reduction occurs.

This entropic compression argument has also come up in other combinatorial applications such as
graph list coloring. In the problem of list coloring, each vertex of a graph G is assigned a list of allowable
colors. We want to choose a color for each vertex out of the assigned list so that no two adjacent vertices
are assigned the same color.

Definition 1. We say that a graph G is k-choosable if it has a proper coloring no matter how one assigns
a list of K colors to each vertex.

1

Molloy [Mol19] used the method entropic compression to establish the following theorem.

Theorem 1 ([Mol19]). If G is a triangle-free graph of maximum degree ∆, then G is (1 + o(1)) ∆
log∆ -

choosable.

We will use the a simplified version of the entropic compression in [Mol19] to establish the following
theorem.

Theorem 2. There exists k such that the following is true for all ∆ ≥ k: that if G is a triangle-free graph
with maximum degree ∆, then G is

⌈
3∆

log∆

⌉
-choosable.

Outline. Section 2 is about the algorithmic Lovász Local Lemma. In Subsection 2.1 we motivate the
Lovász Local Lemma and introduce the k-SAT problem. We specialize to the k-SAT problem in Subsec-
tion 2.2, motivate Moser’s algorithmic approach to the problem and introduce the compression/decoder
framework (Lemma 2) which forms the crux of the analysis of termination of Moser’s algorithm. In Sec-
tion 3, we pivot topics and discuss how to port the framework from Subsection 2.2 to the context of
graph list coloring problems.

Acknowledgements. This paper was written as part of MIT’s 18.424 (Seminar in Information The-
ory). We would like to express gratitude towards Prof. Jon Kelner for his suggestion of the topic and
for his helpful feedback. We would also like to thank Prof. Kuikui Liu for his valuable comments and
suggestions on an earlier draft of this paper.

2 Algorithmic Lovász Local Lemma

In this section, we study one application of the entropy compression technique to give an algorithmic
version of the Lovász Local Lemma (LLL). The LLL is an important probabilistic method pioneered by
Lovász and Erdős [EL75] to identify certain combinatorial structures (one of its first applications was in
the context of Ramsey theory; for a plethora of applications of the LLL we refer the interested reader to
[AS16]). In the next section, we will first give a overview to the statement of LLL, before delving into
Moser’s [Mos09] groundbreaking algorithmic approach to the LLL.

2.1 What is the Lovász Local Lemma?

The Lovász Local Lemma is an important technique in the probabilistic method toolbox. In general, we
are trying to find an object in a search space Ω that avoids some bad (combinatorial) properties. To lever-
age the probabilistic method, we will sample an element of Ω according to some probability measure
and define a number of bad events that correspond to sampling elements with those bad properties.
Suppose each of these bad events happens with probability at most 1. Observe that if we can show that
with positive probability we can avoid all of the bad events then it must follows that there exists an el-
ement in Ω that avoids all the bad properties. Now, if these m bad events {Bi}mi=1 were all independent
then such a scheme works fine; indeed, suppose P[Bi] = 1− bi for 1 ≤ i ≤ m. Then we can conclude that

P

[
m∧
i=1

¬Bi

]
=

m∏
i=1

P[¬Bi] =

m∏
i=1

(1− bi) > 0. (1)

However, in reality, the condition of wanting Bi to all be independent is often too strong a condition
to ask for; it is usually the case that they are somewhat dependent on each other. At this juncture we
introduce an important running example – namely the k-SAT problem – for this section of this exposi-
tory article. We will then define the bad events in this example which we will see exhibits some mild
dependence on each other, which is illustrative of the typical kind of set-up that we will encounter when
applying the LLL.

2

Example 2.1. In the k-SAT problem we have a formula φ of m clauses on n variables where
each clause is the disjunction of k literals, each of which is a variable or its
negation and we want to find an assignment of TRUE/FALSE to the variables
that satisfies the formula i.e. so that φ evaluates as TRUE. For example, ¬x1 ∨
x2 ∨ ¬x3 is a potential 3-SAT clause. A 3-SAT instance could be

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

and x1 = x2 = FALSE, x3 = TRUE is one (of many) satisfying assignment.

We begin by making some preliminary observations about the k-SAT problem. First, note that there
are 2k possible variable assignments to each of the distinct k variables constituting a clause. Only one of
them fails to satisfy the clause, because every variable has to be assigned incorrectly. And so it is very
easy to satisfy a clause: if we randomly assign its variables we succeed with probability 1 − 2−k. This
leads to the following easy observation.

Claim 1. If a k-SAT formula has m ≤ 2k clauses then it is satisfiable.

Proof. This follows by the union bound. Specifically, for a randomly chosen assignment the probability
that it satisfies all the clauses is at least 1−m · 2−k > 0.

Putting this problem in the framework that we introduced at the start of the section, we can define Ω
to be the set of all possible 2n assignments to the n variables. We define m bad events Bi that correspond
to the event that the ith clause is not satisfied. As we have seen above, over a uniformly random choice
of variable assignment we have P(Bi) = 2−k. However, the argument that we gave at the very beginning
of this subsection would not work in this case because the Bi are not independent! In fact, Bi and Bj

are not independent when the ith and jth clause share variables. Now, heuristically, if we constrain
any two of the clauses in our k-SAT formula to not share many variables, then they would be “largely”
independent.

In the proof of Claim 1 we used the union bound which was significantly lossier than (1); indeed
using the union bound, we can show that in the general set-up of bad events Bi, we have

P

[
n∧

i=1

¬Bi

]
≥ 1−

n∑
i=1

P[Bi] = 1−
n∑

i=1

bi. (2)

However, while the RHS of (2) is completely vacuous beyond a certain point, (1) is meaningful in all
possible regimes of the bi. So if we were to impose the constraint that no two clauses in our k-SAT for-
mula shares many variables we could conceivably conclude that the clauses are “close to independent”.
In this case, we would more likely be “closer” to the regime of applying (1) than (2). In particular, we
would hope to show that our formula is satisfiable, even when m is quite large. And this is what the
LLL would give us.

We first state a version of Claim 1 in this set-up where we constrain clauses to not be too dependent
on each other.

Theorem 1. If a k-SAT formula has the property that every clause in the formula shares variables with less than
2k−2 other clauses then it is satisfiable.

In particular, note that there is no constraint on m in Theorem 1, and so we have proven satisfiability
for aribtrarily long formulas (though subject to the dependency constraint)! The proof of this theorem
follows immediately from the LLL, which we state here.

Theorem 2 (Lovász Local Lemma). Let B1, . . . ,Bk be a sequence of events such that each event occurs with
probability at most p and such that each event is independent of all the other events except for at most d of them.
If ep(d+ 1) < 1 then then there is a nonzero probability that none of the events occurs.

3

Proof of Theorem 1. It follows from Theorem 2 and the inequality e2−k((2k−2 − 1) + 1) < 1.

We give an alternate proof that does not blackbox Theorem 2. In particular, the inductive argument
in this proof is basically what goes into the proof of Theorem 2.

“Alternate” proof of Theorem 1. In the following proof, the probabilities are all taken with respect to a
uniformly random sample of assignments to the variables. Let F be a formula with the local constraints
on the variables as in the theorem. Let G ⊂ F be a union of some clauses, and let C be a clause in F \G.
If C does not share variables with any clause in G then we know that

Pσ[σ does not satisfy C|σ satisfies G] = 2−k. (3)

Of course, we cannot hope for this to be true in general for all choices of C and G in F . However,
we claim that a slightly weaker form of the above actually holds under the conditions of the theorem,
namely we claim that

Pσ[σ does not satisfy C|σ satisfies G] ≤ 2−k+1. (4)

This is sufficient for our purposes because we can write

Pσ[σ satisfies F] = Pσ[σ satisfies C1] · P[σ satisfies C2|σ satisfies C1] · . . . · P[σ satisfies Cm|σ satisfies C1, . . . , Cm−1]

≥
(
1− 2−k+1

)m
> 0.

In the remainder of the proof we establish (4). To that end, we induct on the number of clauses in G.
Let G′ be the set of clauses in G that share variables with C. Let G̃ = G \G′. We may assume that G̃ has
less clauses than G because of (3). By the induction hypothesis, for any D ∈ G′, we have that

Pσ[σ does not satisfy D,σ satisfies G̃]

Pσ[σ satisfies G̃]
≤ 2−k+1. (5)

This implies that

Pσ[σ satisfies G] ≥ Pσ[σ satisfies G]− Pσ[σ does not satisfy G′, σ satisfies G̃]

≥(5) Pσ[σ satisfies G̃]− |G′|
2k−1

Pσ[σ satisfies G̃]

≥ Pσ[σ satisfies G̃]

2

where we used the union bound in the penultimate inequality and the locality condition in the last
inequality. This combined with (3) allows us to write

Pσ[σ does not satisfy C, σ satisfies G]

Pσ[σ satisfies G]
≤ Pσ[σ does not satisfy C, σ satisfies G̃]

Pσ[σ satisfies G̃]/2
≤ 2−k+1

as desired.

While Theorem 1 has the very appealing consequence that demonstrates the existence of a satisfiable
formula, the proofs we have seen above does not give an efficient algorithm for finding a satisfying
assignment under the premises of the theorem. The goal of the next subsection is to demonstrate such
an algorithmic procedure.

4

2.2 Algorithmic LLL in the context of k-SAT

The goal of this section is to prove the following theorem, due to Moser [Mos09].

Theorem 3. If a k-SAT formulas has the property that every clause in the formula shares variables with less
than 2k−3 other clauses then a satisfying assignment can be found in expected polynomial time via a randomized
algorithm.

Remark 1. There exists a derandomization of this algorithm; we refer the interested reader to [CGH10].

The most naïve algorithm would be to just repeatedly sample uniformly random assignments to the
literals. We can easily check if an assignment satisfies the formula. So we repeat this sampling until we
find one that actually satisfies the formula. The following proposition shows that such a naïve rejection
sampling algorithm will not terminate in finite time; effectively this kind of naïve algorithm amounts to
finding a needle in a haystack.

Proposition 1. There exists a family of arbitrarily large k-SAT formulas F with the property that every clause
in the formula shares variables with less than 2k−3 other clauses and such that these formulas are satisfied with
exponentially small probability in the size of F when sampling variable assignments uniformly at random.

Proof. Consider clauses of the form (x ∨ x ∨ · · · ∨ x︸ ︷︷ ︸
k times

). We select m distinct clauses of this form from the

variables set {x1, . . . , xn}. Then the probability that a uniformly random assignment to the variables
satisfies the formula thus constructed is 2−m.

The next most natural next step to try is to somehow try to “fix” our initial starting random assign-
ment somehow instead of just doing rejection sampling; this is especially since it appears the kind of
clauses that make Proposition 1 fail are “semi-random” and have a lot of structure that rejection sam-
pling is not accounting for. Specifically, we may attempt something like this: try a random assignment
and then so long as there is a clause that is not satisfied, we can try a new random assignment for the
variables of that clause. In the case when there are few dependencies among the clauses, it turns out
that such a scheme actually works.

To describe the algorithm, we assume that the clauses of F are ordered. The recursive procedure
fix(C) attempts to fix a clause that is not satisfied and then invoke itself recursively.

1 Moser’s algorithmic LLL ;
Input : a k-SAT formula F obeying constraints of Theorem 3
Output: a satisfying assignment

2 Initialize by choosing a random assignment to the variables;
3 while there is an unsatisfied clause C, choose the lexicographically first do
4 Fix(C);
5 end
6 Function Fix(C):
7 Resample the variables of C uniformly at random;
8 while there is an unsatisfied clause C ′ sharing variables with C, choose the lexicographically first do
9 Fix(C ′);

10 end

It may be somewhat surprising at first glance that such a scheme terminates, and in fact we will show
that it terminates in time polynomial in the size of the formula.

Lemma 1. Each clause of the k-SAT formula appears at most once as an unsatisfied clause in the outer loop of the
above algorithm.

5

Proof. For any variable assignment, after calling Fix(C), a clause that was satisfied before this function
call stays satisfied after the call. In other words, upon each implementation of the outer loop, we make
a genuine improvement since we reduce the number of violated clauses by 1: after terminating Fix(C),
C would be satisfied as well.

Suppose F has m clauses. The lemma shows that the outer loop (line 3) is executed at most m times.
It remains to prove that the total number of recursive calls to Fix is not too large.

The key idea for this step is the following slogan that we have seen information theory:

 Uniformly random data cannot be efficiently compressed.

We formalize this intuition as follows. Let r < s be two integers. A compression function is a function
C: {0, 1}s → {0, 1}r ∪ {⊥} that outputs a shorter binary string or failure symbol ⊥. A decoder function
D: {0, 1}r → {0, 1}s takes a compressed binary string and decodes the longer string.

Definition 2. We say that a pair of compression and decoder functions satisfy soundness if for all b ∈
{0, 1}s such that C(b) ̸=⊥, we have that

D(C(b)) = b.

Remark 2. In practice, we would want properties like C and D to run in polynomial time, but we omit these
considerations for now.

We can formalize our key intuition above () using the language of compression functions and de-
coder functions. Colloquially, the following lemma states that we cannot have sound compression on
uniformly random data for a compression function that does not fail.

Lemma 2. Let r < s be two integers, then if C: {0, 1}s → {0, 1}r ∪ {⊥} and D: {0, 1}r → {0, 1}s satisfy
soundness, we must have that

P[C(b) =⊥] ≥ 1− 2r−s

where the probability is over uniformly random chosen strings in {0, 1}s.

Proof. This is not a deep theorem and is basically counting. Note that there are no distinct strings b,b′ ∈
{0, 1}s such that C(b) = C(b′) ̸=⊥. So there can be at most 2r of the 2s input strings that are mapped to
an input that is not ⊥ which then gives the desired conclusion.

In order to use this lemma to bound the running time of our algorithm, we will use a binary string
to keep track of the randomness that we are utilizing in Moser’s algorithmic LLL(1). Then we show
that either the algorithm would find a satisfiable assignment in fast, or it would then give a sound
compression for all possible inputs of the binary string, which would then contradict Lemma 2.

As the algorithm runs, we want to record a log of the clause that is being fixed. One way to do so is to
run down a binary string on log2 m bits corresponding to the index of the clause for which we have run
fix on. But there is a specific structure from our local constraint: if we ran fix(C) and then recursed
on a clause C ′ which shares with variables with C then because there are only 2k−3 candidates for C ′

we should be able to do so much more compactly. We use this idea to extend the above algorithm to
include a log in the following fashion.

Definition 3. For a clause C in a k-SAT formula F , we denote N(C) to be the collection of all clauses of
F that share a variable with C.

In the Extended Moser’s algorithmic LLL 2, for a clause C in a collection of clauses F , we use bin(C,
F) to be the function that returns the binary string corresponding to the index of C in F . We keep track
of an additional log which we periodicially add more binary strings to as we run the algorithm.

The way to parse what we are writing to the log is at follows: whenever we make a recursive call
is made to fix a violated clause C ′ ∈ N(C) in the inner loop, we append a bit ‘1’ to the log to indicate
that we have entered one deeper layer of the loop. And once we have corrected all the violated clauses

6

1 Extended Moser’s algorithmic LLL ;
Input : a k-SAT formula F obeying constraints of Theorem 3
Output: a satisfying assignment

2 Initialize by choosing a random assignment to the variables;
3 while there is an unsatisfied clause C, choose the lexicographically first do
4 add_to_Log(Bin(C,F));
5 Fix(C);
6 end
7 Function Fix(C):
8 Resample the variables of C uniformly at random;
9 while there is an unsatisfied clause C ′ sharing variables with C, choose the lexicographically first do

10 add_to_Log(‘1’ ◦ Bin(C,N(C)));
11 Fix(C ′);
12 end
13 add_to_Log(‘0’)

C ′ ∈ N(C) we append a bit ‘0’ to the log to indicate that we have returned to an outer loop. For the
outer loop, we record the index of the clause for which we are initiating the fixing process on. Note that
we are saving a lot of bits for encoding the index of the formula in the inner loop.

In summation, each outer level adds a total of logm + 1 (the ‘+1’ comes from the fact that upon
termination of the outer layer we will also append a ‘0’ to the log) bits to the log and each inner loop
adds an additional log2(2k−3)+2 = k− 1 bits to the log (the ‘+2’ comes from the fact that we add a ‘1’ to
the log to go into a deeper level of recursion and upon termination of this level of the recursion we add
a ‘0’ to the log).

Suppose we make t recursive calls of the inner loop, then by the above as well as Lemma 1, the
number of bits stored on the log is

m(log2 m+ 1) + (k − 1)t. (6)

Given the log, we can reconstruct the entire procedure of clause corrections that the algorithm made.
In particular, we claim that we can actually “reconstruct all the randomness when we resampled the
variables” if we are given the log. Indeed, let C be the first corrected clause, and we know the initial
values that were assigned before corrections. Suppose C1 is the next corrected clause, which are made
up of variables not shared with C1 which we know from the initial values and for the other ones that are
shared with C because C1 is violated we now know the values of these variables. In other words, each
entry in one depth lower (so after the ‘1’ we wrote on the log0 allows us to reconstruct the respective
next values of the k variables in the clause. So after reading the whole log we can describe all the values
eahc variable has received during the procedure with the expect for the final assignment of values that
it receives.

Lemma 3. The probability that the Extended Moser’s algorithmic LLL(2) does not terminate before doing the
inner loop t times is at most

2m(log2 m−1)−t.

This lemma would immediately give us the conclusion that we desire – the expected time that it will
take for the algorithm to terminate is therefore O(m log2 m). To prove this lemma, we want to invoke
Lemma 2. To that end, we describe this whole procedure of reconstructing the randomness from the log
into the language of compressing functions and decoder functions.

Proof of Lemma 3. Consider a compressing function

C: {0, 1}n+tk → {{0, 1}n+(m log2 m+1)+t(k−1)} ∪ {⊥}

7

where for a string b ∈ {0, 1}n+tk we run the Extended Moser’s algorithmic LLL(2) using b as the ran-
domness: the first n bits are used in the initialization of the variables (line 2), then we batch the remaining
b into clusters of k each and use them for the random reassignment each time Fix is called. Let the al-
gorithm run for t time and if it has not produced a satisfying assignment, then let C output a string given
by the concatenation of the log and also the n bits representing the current assignment of the variables
upon termination. By (6) we know that the output has at most the output length we desire; pad zeroes
if necessary. Else, if the algorithm found a satisfying assignment in less than t steps then output ⊥.

Then the decoder function

D: {0, 1}n+(m log2 m+1)+t(k−1)} → {0, 1}n+tk

basically follows the procedure we have described in the preamble to the proof. Recall that we can figure
out the history of all the values the variables has taken besides the final value, but we have now given
the decoder these values by the compression scheme. In other words, we have guaranteed that we have
that (C,D) as constructed satisfies soundness. In other words, by applying Lemma 2, it follows that the
probability we get an output of ⊥ from C has to be at least 1−2m(log2 m+1)−t which is exactly our desired
conclusion.

3 List coloring

In this section, we study a combinatorial application of the entropy compression argument in Sub-
section 2.2 to list coloring. Recall the following definition of k-choosability.

Definition 4. We say that a graph G is k-choosable if it has a proper coloring no matter how one assigns
a list of K colors to each vertex.

Example 3.1. The bipartite graph K3,3 is not 2-choosable. It is an easy exercise to check that
the following of assignments of colors does not yield a valid coloring.

{1, 2}

{1, 3}

{2, 3}

{1, 2}

{1, 3}

{2, 3}

The goal of this section is to prove Theorem 2, which we recall here for reference.

Theorem 2. There exists k such that the following is true for all ∆ ≥ k: that if G is a triangle-free graph
with maximum degree ∆, then G is

⌈
3∆

log∆

⌉
-choosable.

In fact, we will even produce an explicit algorithm to produce such a coloring; as in Sub-section 2.2
we will give a recursive algorithm for finding such a valid coloring. Before we describe the algorithm,
we make some general remarks about coloring problems. In what follows, we will use the following
notation: for a vertex v, let ℓ(v) denote the list of colors that is assigned to it. For a vertex v, we will also
write N(v) to denote the number of neighbors of v in the graph.

A partial coloring of a graph is one where only small of its vertices are assigned a color and others
are uncolored which we think of as assigning the color ‘blank’. A valid partial coloring is one where

8

adjacent non-blank vertices are not assigned the same color. It is often easier to find a valid partial
coloring since we are reducing the number of constraints on the system. One of the key techniques
in coloring problems is to first identify a partial coloring in which colors appear many times in vertex
neighborhoods so that we can extend the partial coloring greedily to a full coloring. Let t be a parameter
to be determined. For a vertex v, and a partial coloring ϕ of the vertices, let us define the events:

• Sv : the event that |ℓ(v) \
⋃

w∈N(v) ϕ(w)|≤ t, i.e. the event where fixing the colors that ϕ assigns to
the vertices in N(v), the number of possible colors we can assign to v so that the coloring remains
valid is at most t

• Rv : the event that at least t vertices of N(v) are uncolored.

The important observation is that:

If we find a partial coloring ϕ such that for every vertex v the events Sv and Rv do not
hold, then we can extend the partial coloring ϕ to a valid coloring of the entire graph by
a greedy coloring process.

Henceforth we will work solely with partial colorings. We can think of Sv and Rv as the bad events
corresponding to the unsatisfiability of a clause that we considered in Subsection 2.2. To that end, con-
sider the following analogue to Extended Moser’s algorithmic LLL(2). First, fix an ordering on the ver-
tices and the events Sv and Rv ; in other words we have an ordering < on vertices and ≺ on events with
the consistency relationship that if u < v then Su ≺ Sv , Ru ≺ Rv and furthermore for all u, v we have
Su ≺ Rv . Let Bv = Rv ∨ Sv . Given a current partial coloring ϕ, when we say recolor a neighborhood of
v, we mean for each vertex u ∈ N(v), choose a uniformly random color in (ℓ(u)\w∈N(u) ϕ(w))∪{blank}.

1 Algorithmic list coloring;
Input : a triangle free graph with maximum degree ∆ and a list of ⌈ 3∆

log∆⌉ colors for each vertex
Output: a valid coloring

2 Initialize by choosing a uniformly random coloring for each vertex;
3 while there is a v for which Bv is true, choose the lexicographically first do
4 Fix(v);
5 end
6 Function Fix(v):
7 add_to_Log(Bin(

⋃
w∈N(v) ϕ(w)));

8 Recolor the neighborhood of v;
9 while Su holds for a vertex u such that dist(u, v) ≤ 3 or Ru holds for a vertex u such that

dist(u, v) ≤ 2 do
10 add_to_Log(‘1’ ◦ (‘1’ if Ru and ’0’ if Su) ◦ Bin(shortest path from u to v));
11 Fix(u);
12 end
13 add_to_Log(‘0’);

Here we used Bin to denote binary encodings of the objects in question. Note that it suffices to
demonstrate that the algorithm terminates in finite time, because upon termination we will find a partial
coloring such that Sv and Rv do not hold for every vertex, as desired. First, we note that an analogue of
Lemma 1 holds which shows that the outer loop makes a genuine improvement to the partial coloring
each time it is run.

Lemma 4. Each vertex of a graph G (that satisfies the input constraints of the Algorithmic list coloring) appears
at most once in the outer loop of the algorithm.

9

Proof. For any assignment of colors, after calling Fix(v), a vertex u for which Bu is false remains false.
This is because while new events may appear from the recoloring of the neighborhood of v, they are
contained in the neighbood of distance at most 2 from v and they would then be fixed in the inner loop.
Consequently, the number of vertices for which Bv is true reduces by 1, and this proves the lemma.

It remains to show that the number of times we run the inner loop is not too large. As before, we
want to use the entropy compression technique via Lemma 2. The key details for implementing this in
Sub-section 2.2 was the construction of an execution log that had the following two properties:

(1) In each iteration of the inner loop, the number of bits β that we wrote to the log is much smaller
than than the total bits of randomness γ that we used.

(2) Given the final assignment and the execution log we could “recover all the randomness” that went
into running the algorithm; precisely, we could figure out all the values that the variables took at
every stage of the algorithm.

Once we have checked that each of these properties hold, then we can run the same proof as Lemma 3
to conclude that we do not run the inner loop for too many steps.

Proof sketch of Theorem 2, assuming (1) and (2) above. Consider a compressing function

C: {0, 1}n log(3∆/log∆)+tγ → {0, 1}n log(3∆/log∆)+tβ ∪ {⊥}

where for a string b ∈ {0, 1}(3∆/log∆), we run Algorithm 3 using b as the randomness: the first n log(3∆/log∆)
bits are used in the initilization of the coloring (line 2), and then we batch the remainder of b into clus-
ters of γ bits each and use them for the random recoloring of neighbors each time Fix is called. Let the
algorithm run for t time and output ⊥ if it has not produced a valid coloring. Let C output a string given
by the concatenation of the log and the final coloring upon termination.

By (2), we can write a decoder function D: {0, 1}n log(3∆/log∆)+tβ ∪ {⊥} → {0, 1}n log(3∆/log∆)+tγ be-
cause we can figure out the history of all the colors that we have assigned to each vertex. In other words,
(C,D) satisfies soundness, and by Lemma 2, the probability that we output ⊥ and do not terminate is
23n log(∆/log∆)−t. In particular, for a fixed ∆ we can find a valid coloring for the graph in linear time!

For the remainder of the section, we check that there is a way to write few bits to the log to encode
the random resampling steps when Fix is called so that properties (1) and (2) hold.

First, to check that (1) holds, we should formally define the binary encodings in the algorithm. The
first time we record to the log in (line 7), we are recording the colors of the neighborhood of a vertex v.
Apriori we know that there are at least

α =
∏

u∈N(v)

∣∣∣∣∣∣ℓ(u) \
⋃

w∈N(u)

ϕ(w)

∣∣∣∣∣∣+ 1

 (7)

possible colorings, and this would mean that encoding the colors of the neighborhood of a vertex v.
However, it turns out that actually we can narrow down the possibilities a lot by using concentration
bounds.

The key point lies in utilizing the property that G is triangle-free. This would imply that for any
vertex v, its neighborhood is an independent set. Consequently if we just restrict to studying events
on vertices in N(v) we can think of the events on each vertex as being independent and apply Cher-
noff/bounded difference inequalities to obtain concentration bounds on these events that would then
give us an estimate on the number of viable colorings that we have. We will see that in order for the
probabilistic calculations to go through we should set t =

√
14∆ log∆.

Recall that when we say recolor a neighborhood of v, we mean for each vertex u ∈ N(v), choose a
uniformly random color in (ℓ(u) \w∈N(u) ϕ(w)) ∪ {blank}.

10

Lemma 5. There exists k such that if ∆ ≥ k, for a graph satisfying the constraints in Algorithmic list coloring
and a vertex v of the graph, if we recolor the neighbors of v according to the process described earlier then

P[Sv] ≤ ∆−4.

In (line 9) of the inner loop, we required Su to hold for vertices u such that dist(u, v) ≤ 3 and fur-
thermore in the lexicographic ordering we also wanted Su ≺ Rv to hold for all u, v. Those may seem like
arbitrary choices, but actually they were chosen so that whenever the inner loop was executed on Rv

then we know that Sv did not hold for any of the neighbors of v.

Lemma 6. There exists k such that if ∆ ≥ k, for a graph satisfying the constraints in Algorithmic list coloring
and a vertex v of the graph such that Sv is not true for all neighbors of v, if we recolor the neighbors of v according
to the process described earlier then

P[Rv] ≤ ∆−4.

We will give proof sketches for each of these lemmas at the end of this section. These lemmas imply
only a 2α fraction of the total possible re-colorings of the neighborhood of vertex v allows for either Rv or
Sv to hold, this means if we called Fix(v) then there are at most ∆−4α candidates for its neighborhood.
In other words, we need at most log(2∆−4α) = log2 α− 4 log2 ∆+ 1 bits to do Bin

(⋃
w∈N(v) ϕ(w)

)
.

The second time we record to the log in (line 10) is about the shortest distance to a violating vertex in
the neighborhood of v. Note that there are at most ∆3 paths from a vertex v to its radius 3 neighborhood
(i.e. to vertices that are distance at most 3 from v). Consequently, to encode the shortest path in the
algorithm we would need at most ∆3 bits. In total each call to the inner loop writes about 3 log2 ∆ + 2
bits to the log.

To summarize, in each execution of the inner loop we use log2(α) number of bits of randomness
to sample a uniformly random recoloring of the neighborhod of v as in 7. However, we only write
3 log2 ∆+ log2 α− 4 log2 ∆+O(1) < log2 α bits to the log, which shows that (1) is true.

To show that (2) is true, note that what we record to the log in line (9) allows us to recover exactly
which bad event Su or Ru is being processed at the current step of the algorithm. Now suppose we are
processing the call Fix(u). Then we know that the coloring at this step matches those of the last step on
N(N(u)) and in particular we are able to recover ℓ(v) \

⋃
w∈N(v) ϕ(w) for all v ∈ N(u) and therefore we

would be able to make decode from (line 10) that we described above.

3.1 Deferred proof sketches

We will need to use the following two concentration inequalities.

Theorem 4 (Bounded differences inequality). Let X1 ∈ Ω1, . . . , Xn ∈ Ωn be independent random variables.
Suppose f : Ω1 × · · · × Ωn → R satisfies

|f(x1, . . . , xn)− f(x′
1, . . . , x

′
n)|≤ c

whenever (x1, . . . , xn) and (x′
1, . . . , x

′
n) differ on exactly on coordinate. Then the random variable Z = f(X1, . . . , Xn)

satisfies for any t ≥ 0

P[|Z − E[Z]|> t] ≤ 2−
t2

2n .

Theorem 5 (Chernoff inequality). If X is a random variable such that µt =
X1+···+Xt

t where Xi are indepen-
dent Bernoulli random variables, then

P[X ≥ (1 + a)E[X]] ≤ 2 exp(−2E[X]/3).

11

Proof sketch of Lemma 5. For notational simplicity, write k(v) =
∣∣∣ℓ(v) \⋃w∈N(v) ϕ(w)

∣∣∣. First note that,
taking expectation over the random recoloring of neighbors of v procedure, we have that

E [k(v)] =
∑

c∈ℓ(v)

∏
u∈N(v)
c∈k(u)

(
1− 1

|k(u)|+1

)

>
∑

c∈ℓ(v)

e

∑
u∈N(v)
c∈k(u)

1
|Fu|

≥
⌈

3∆

log∆

⌉
e−d/⌈ 3∆

log ∆⌉ ≥ 2t,

where the second last inequality follows from Jensen’s inequality. Now we can apply Theorem 4 since
k(v) depends on ∆ independent trials in each of the neighborhood and changing one of the neighbors
affects k(v) by at most 1 to show that we have good concentration around the average which gives us
the desired bounds:

P[|k(v)|≤ t] ≤ 2e−
t2

2∆ < ∆−4,

as desired

Proof sketch of Lemma 6. Let N be the number of neighbors of v that are labeled ‘blank’. Because Au does
not hold for all u ∈ N(v) we have that E[N] ≤ ∆/t. N is also the sum of ∆ independent random
variables so we can just use Theorem 5 to conclude that

P[N ≥ t] ≤ P[N ≥ t2/∆ · E[X]] ≤ e−(14 log∆−1)/3E[X] ≤ e−4 log∆ = ∆−4,

as desired.

References

[AS16] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics
and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016.

[CGH10] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algo-
rithms for the Lovász local lemma. In Proceedings of the Twenty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 992–1004. SIAM, Philadelphia, PA, 2010.

[EL75] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, pages 609–627. North-Holland,
Amsterdam, 1975.

[Mol19] Michael Molloy. The list chromatic number of graphs with small clique number. J. Combin.
Theory Ser. B, 134:264–284, 2019.

[Mos09] Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC’09—Proceedings
of the 2009 ACM International Symposium on Theory of Computing, pages 343–350. ACM, New
York, 2009.

[Tao10] Terence Tao. An epsilon of room, II. American Mathematical Society, Providence, RI, 2010. Pages
from year three of a mathematical blog.

12

	Introduction and overview
	Algorithmic Lovász Local Lemma
	What is the Lovász Local Lemma?
	Algorithmic LLL in the context of k-SAT

	List coloring
	Deferred proof sketches

