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1 Where are we headed?

A significant part of “classical” number theory constitutes the study of Diophantine equations:
solutions of polynomial equations in rationals (or equivalently, integers). For monovariate
polynomials, such a question is fully resolved by the rational roots theorem; if anxn + · · · +
a0x0 = 0 has a rational solution p/q then q | an and p | a0. The upshot is that we have turned
what was apriori an infinite problem of sorts into the checking of a finite number of possibili-
ties. The natural next step would be to ask the same sort of questions for bivariate polynomials
f(x, y). Here the behavior becomes much more subtle. Let us begin with some easy cases. The
degree 1 case of f(x, y) = ax + by + c is sometimes known as “Chicken McNugget Theorem”
where there are infinitely many solutions iff c | gcd(a, b). The degree 2 case turns out to also
be resolvable fairly easily; such polynomials are conics, and their solutions can be described
via geometry. The first interesting case, as it turns out, is when we start to try to solve degree 3
bivariate polynomial equations over rationals; more tellingly, equations such as y2 = x3+ax+b
is what is known as the short Weierstrass form of elliptic curves.

Although much is still unknown about elliptic curves, we do have a characterization of the
number of rational points on elliptic curves. In fact, we have an algorithm for obtaining all
such rational points: given a set of generators we can obtain any rational point on an elliptic
curve E by successively intersecting, for finitely many times, tangents and chords between the
points already identified with the elliptic curve. This fact was first proven by Mordell, and Weil
extended the argument from Q to all number fields in general.

Theorem 1 (Mordell-Weil Theorem). Let E be an elliptic curve defined over a number field K. Then
the group of K-valued points E(K) is a finitely generated Abelian group. Thus, E(K) ' Zr ⊕ T where
T is the finite torsion subgroup.

For the rest of the paper we will work in the setting of K = Q for simplicity. There are some
technical details we have yet to unpack, namely the Mordell-Weil theorem only makes sense
and is interesting if we can give a group law on E(Q) to make it into an Abelian group. This
will be further discussed in the next section. For now, we move on with the main idea for the
proof of the theorem.

(a) First, we prove the weak Mordell-Weil theorem, which states that E(Q)/mE(Q) is finite for
any positive integer m. As part of this step, we will show that the torsion points of E(Q)
is finite.

(b) Next, we study the heights of points on the curve; vaguely heights is the measure of
the “size” of a point. Using the machinery of heights, we can prove that there are not too
many ‘small’ points. Along with a descent argument fromE(Q)/mE(Q), we can conclude
that E(Q) is finitely generated.
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We will not be able to prove the Mordell-Weil theorem in this article, and will instead focus
on (a). It will turn out that one of the reasons for studying elliptic curves over Qp is to char-
acterize the torsion points on an elliptic curve. The aim of this paper is to investigate torsion
points and prove the following theorem.

Theorem 2 (Nagell-Lutz Theorem). The group of rational torsion points on an elliptic curve E(Q) is
finite. If (x, y) 6= O is a point of finite order, then x, y ∈ Z.

We will give a high-level sketch, and should therefore be taken with a grain of salt, of a
roadmap for this note. The idea is to instead study the kernel of E(Qp) under a well-defined
reduction map to E(Fp). It turns out that if we have a torsion point with order coprime to p,
then we end up getting a torsion of the same order in E(Fp). Since E(Fp) is a finite group, this
makes it possible to calculate and identify the torsion points. By looking at different values of
p, we are able to derive restrictions on the order of the torsion group of E(Q) and in fact even
obtain a precise result classifying torsion points as in Theorem 2.

Outline. Section 2 is intended to be a brief crash course on elliptic curves, which sets the
stage for analyzing the group structure on E(Q). In section 3, we talk about the operation
of the reduction map to E(Fp) as mentioned above. The key point is that this reduction is a
group homomorphism and preserves the group structure. In section 4, we prove that E1(Qp) is
torsion-free by introducing the p-adic filtration on E1(Qp). It turns out that it is easier to handle
points with order coprime to p, but we will be able to boost our result to the general setting.
Finally, we soup everything up in section 5 and give a proof of the Nagell-Lutz theorem.

Acknowledgements. This paper was written as part of MIT’s 18.784 (Seminar in Number
Theory). We would like to express our gratitude towards Tony Feng for his suggestion of the
topic as well as references. Additionally, we would also like to thank Mark Jabbour and Tristan
Shin for their comments and suggestions on a draft version of this paper.

2 A brief primer on elliptic curves

In this section, we recall some basic facts about elliptic curves that we will need. For a more
detailed discussion, we refer the reader to the textbooks cited in the references ([Cas95], [ST15]
and [Sil09]) or Prof. Drew Sutherland’s 18.783 lecture notes. An abstract definition of elliptic
curve is the following.

Definition 1. An elliptic curve is a non-singular projective curve of genus 1 with a distinguished
point.

We will give a more explicit equivalent definition of elliptic curve which we will work
with for the rest of the paper. But we will begin by explaining some key terms in the abstract
definition above, because it sets up the groundwork for what is to come.

We begin by defining the projective plane and projective curves. We work with the projec-
tive plane instead of the more familiar affine plane A2(k) = {(x, y) : x, y ∈ k} because it is in
some sense more “complete”.

Definition 2.
P2 = P2(k) = {(a, b, c) : a, b, c ∈ k, (a, b, c) 6= (0, 0, 0)}/∼
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where we are modding out by the equivalence ∼ with (a, b, c) ∼ (a′, b′, c′) iff there exists some
t ∈ C∗ such that a = ta′, b = tb′ and c = tc′. We will write the equivalence class of a point as
(a : b : c).

We will think of (x : y : 1) as affine points since these form a copy of A2(k) embedded in
P2(k). The points (x : y : 0) are thought of as the points at infinity.

Definition 3. A projective curve C of degree d over k is a homogeneous degree d polynomial
f ∈ k[x, y, z]. The k-rational points of C (with corresponding homogeneous polynomial f ) is
given by the set C(k) = {(x : y : z) ∈ P2(k) : f(x, y, z) = 0}.

Definition 4. A point P ∈ C(k) is singular if ∂f/∂x, ∂f/∂y and ∂f/∂z all vanish at P . We say
that C is non-singular if there are no singular points in C(k).

It turns out that we work with genus 1 curves, because genus 0 ones correspond to quadratic
forms which we already know how to characterize via Hasse-Minkowski theorem and the like.
But instead of defining what a genus is, we will unwind the definition and use the following
explicit description of an elliptic curve for the rest of this note.

Definition 5. An elliptic curve over a field k is a non-singular projective curve where the corre-
sponding homogenous polynomial is given by

F (x, y, z) = y2z + a1xyz + a3yz
2 − x3 − a2x2z − a4xz2 − a6z3

with a1, . . . , a6 ∈ k. The unique point at infinity is given by O = (0 : 1 : 0).

Remark 1. Although we have defined an elliptic curve this way, in many texts a more abstract
definition is used and one then shows that any elliptic curve can be put in the form given in
the definition, which is known as the Weierstrass equation.

We will be working with elliptic curves over Q, which we will study by considering the local
fields Qp. Both of these have characteristic 0. In the context of characteristic 0, the following
reduction will be convenient.

Definition 6. When the characteristic of the field we are working with is not 2 or 3, it turns out
that elliptic curves can be written as a short Weierstrass equation of the form y2z = x3+axz2+bz3.

We will thereafter primarily work with the short Weierstrass equation form of elliptic curves.
We will often work with the dehomogenization of the elliptic curve by intersecting with an affine
plane; effectively we will treat z = 0 as the line at infinity, so that on the affine patch we work
with z 6= 0. Besides the pointOwhich is a point at infinity, on this affine patch the elliptic curve
can be written in the form y2 = x3 +ax+ b which is much easier to work with. In what follows,
when we specify an affine point on an elliptic curve, we will interchangeably write (x, y) and
(x : y : 1) depending on the context.

Remark 2. In fact, the relative convenience of being able to work with short Weierstrass equa-
tion is why we choose to stay in the specific instance of Qp rather than following Silverman’s
treatment in [Sil09, Section VII.2] where he develops in greater generality the theory of elliptic
curves over local fields (which may be of characteristics 2 or 3).
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The next goal in this section is to elucidate what we mean when we say that E(Q) is
an Abelian group. To do that, we recall Bézout’s theorem, which vaguely states that if two
non-singular projective curves C1, C2 (with corresponding polynomials f1, f2) intersect “some-
what generically ” (precisely, we mean their intersections are transversal) then #(C1 ∩ C2) =
deg f1 deg f2, which concurs with our intuition. For aesthetic reasons, we will not define Bé-
zout’s theorem formally. Conceivably, this means if we take a rational point P on an elliptic
curveE and a line ` through it with rational slope, then unless ` is tangent toE then it would in-
tersect E at two other points. These need not be rational points. It turns out however that if we
start with rational points P,Q then the line ` = PQ intersects E at another rational point. This
will provide us with the mechanism to define a group law on E(Q), since given two rational
points we can use this geometric procedure to obtain another rational point.

More precisely, we will take the distinguished point at infinityO to stand in for the function
of 0 in our group. Given rational points P,Q, we will define PQ ∩ E = R to be the point such
that P + Q + R = 0. This means to find P + Q, we first PQ ∩ E = R. Then P + Q = −R.
Considering R + (−R) +O = 0, P +Q can be found by intersecting the line through R and O
with the elliptic curve again, which corresponds to reflecting R across the x axis.

Figure 1: An illustration of the group law on an elliptic curve.

Of course, it is not immediately obvious that such a construction does produce for us a
group law. For instance, it is far from obvious that we even have associativity (A + B) + C =
A + (B + C) since we would be intersecting very different lines with the elliptic curves when
doing the computations on either sides of the equation. We will state the properties that need
to be checked, and leave the checking to the interested reader.

Lemma 1. There exists a binary operation ⊕ on E(Q) with the following properties:

(i) P ⊕Q = Q⊕ P .

(ii) P ⊕O = P .

(iii) If a line L meets E at points P,Q,R, then (P ⊕Q)⊕R = O.

(iv) Given P ∈ E(Q), there exists R ∈ E(Q) such that P ⊕R = O.

(v) (P ⊕Q)⊕R = P ⊕ (Q⊕R).

Therefore, (E(Q),⊕) is an Abelian group.
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3 Reduction modulo p

The general philosophy for understanding Q-rational points is to instead study Qp-rational
points. We now begin investigating the properties of elliptic curves defined over p-adics. Let
E/Qp be an elliptic curve, say

E : y2 = x3 + ax+ b.

Note that we may ensure that the coefficients a, b ∈ Zp by performing suitable coordinate trans-
formations. Indeed, by setting t = max{|a|p, |b|p}, then the substitution (x, y) 7→ (t−2x, t−3y)
gives

t−6y2 = t−6x3 + at−2x+ b,

which upon multiplying through by t6 gives

y2 = x3 + (at4)x+ (bt6)

where at4, bt6 ∈ Zp.
Now, since we my assume we are working with elliptic curves where the coefficients lie in

Zp, writing bars to mean reduction (mod p), we can define the reduction (mod p) of E over
Fp as

E : y2 = x3 + ax+ b.

Remark 3. This sort of operation can be extended to any local field K with associated ring of
integers R and discrete valuation v. It turns out that by working with the minimal Weierstrass
equation of an elliptic curve E, which is the elliptic curve obtained with coefficients lying in
R and minimizes v(∆) where ∆ is the discriminant, we can ensure that the equation of E is
unique up to the standard change of coordinates for Weierstrass equations.

It would be good if such reductions produced an elliptic curve E. It is not immediately
obvious if E is non-singular - and it will turn out that there could be singular points - but it is
also not obvious what such a reduction would do to the group law. To that end, we need to
first understand what the reduction map does to the ambient projective space, so that we can
understand how to intersect lines with the elliptic curve.

For a point P = (x0 : x1 : · · · : xn) ∈ Pn(Qp), we may scale to ensure that all coordinates ac-
tually lie in Zp and that not all coordinates are divisible by p. Then we can define the reduction
of P as P = (x0 : x1 : · · · : xn). This also allows us to reduce lines (mod p). Indeed, given a
line ax+ by + cz = 0 in P2(Qp), we can instead think of it as a triple (a : b : c) ∈ P2(Qp). We can
then recover the reduced line as ax+ by + cz = 0.

It turns out that this reduction is a group homomorphism. In light of our discussion so
far, this may be fairly intuitive. “Generically”, we should expect that collinear points P,Q,R
on an elliptic curve stay collinear after reduction since we are reducing everything (mod p)
“the same way”. What could go wrong is for example it could happen that the reduced curve
contains the line PQ. We need to check that these scenarios do not arise.

Lemma 2. Let E be an elliptic curve with coefficients in Zp. If P1, P2, P3 ∈ E(Qp) are collinear then so
are the reductions P1, P2, P3. Moreover the reduction of the tangent to E at P1 is a tangent to E at P1.

Proof. Suppose P1, P2, P3 ∈ ` such that ` : ax+ by+ cz = 0. Write Pi = (xi : yi : zi). As we have
discussed, we may assume that all coordinates of Pi lie in Zp and they are not all divisible by
p. Similarly, we may also assume a, b, c ∈ Zp and WLOG p - c. Then we can rewrite the line as
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` : z = a1x + b1y. Suppose that the polynomial equation corresponding to e is F (x, y, z) = 0,
where F is a homogeneous cubic that arises from homogenizing the short Weierstrass equation.
The intersection points of ` and F are the roots of G(x, y) = F (x, y, a1x + b1y). We reduce this
equation (mod p), which gives G(x, y) = F (x, y, a1x+ b1y) = 0.

Let us observe that G does not vanish identically. Note that the case of G vanishing iden-
tically is the case of the reducted curve containing a line that we mentioned could possibly
go wrong. Note that because we are working with short Weierstrass equations, this does not
happen; any curve of the form y2 = f(x) where f is a monic polynomial of odd degree remains
irreducible after reducing (mod p).

Now, observe that (xi, yi) 6= (0, 0) as otherwise zi = a1xi + b1zi = 0 which is a contradiction
to the assumption that not all coordinates of Pi are divisible by p. In particular, if we consider
H(x, y) = (y1x− x1y)(y3x− x3y)(y3x− x2y) then the reduction of H cannot vanish identically
and by assumption we also have that there exists some λ ∈ Qp such that F (x, y, a1x + b1y) =
λH(x, y). Now, λ ∈ Zp; otherwise, p−1λ ∈ pZp and we would have that 0 = λF = H which is
a contradiction to our earlier result on H not vanishing identically. Consequently, this means if
we reduce (mod p) we get that F (x, y, a1x + b1y) = λH(x, y) for some λ ∈ F×p , since F is not
identically zero. Unwinding what this means, we have that the reduced points Pi are collinear
as desired.

Next, observe that if P lies onE then evidently P lies onE. It seems natural to ask about the
converse. In fact, we will we show that the reduction map is also surjective on the non-singular
points.

Lemma 3. If Q is a non-singular point on E, then there is a P ∈ E(Qp) such that Q = P .

Since we are “lifting” points, it is perhaps unsurprising that the proof goes through via
Hensel’s lifting.

Proof. Let F (x, y, z) be the homogeneous polynomial corresponding to E. As before, assume
that Q = (x1 : y1 : z1) such that x1, y1, z1 ∈ Zp. Since Q is a non-singular point on E, it follows
that ∂F

∂x (x1, y1, z1) 6= 0. Then we can apply Hensel’s lifting to G(t) = F (t, y1, z1) where we
initiate with t = x1. Suppose the output of Hensel’s lifting is x′, then it is easy to see that
P = (x′ : y1 : z1) is the point that we desire.

We can package all of the above information into an exact sequence. First, we define some
of the terms that will appear in our exact sequence.

Definition 7. Let Ens(Fp) denote the set of non-singular points on the reduced curve E. Define
also:

• E0(Qp) = {P ∈ E(Qp) : P ∈ Ens(Fp)},

• E1(Qp) = {P ∈ E(Qp) : P = O},

where we can think of E0 as the points with nonsingular reduction and E1 as the kernel of
reduction.

Definition 8. We say that E/Qp has good reduction at p if E is non-singular.
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Theorem 3. There is an exact sequence of Abelian groups

0→ E1(Qp)→ E0(Qp)→ Ens(Fp)→ 0.

In particular, if E/Qp has good reduction at p, then we have

0→ E1(Qp)→ E(Qp)→ E(Fp)→ 0.

4 E1(Qp) is torsion-free

In this section, we will study E1(Qp) more closely, following the treatment as in [Cas95] with
the goal of establishing the title of this section. In [Sil09], there is a cleaner characterization of
E1(Qp) using the machinery of formal groups. We opted for the current presentation because it
takes less background to develop.

Our goal in the first part of this section is to establish the following “Qp-analogue” of the
Nagell-Lutz theorem.

Lemma 4. Let (x, y) ∈ E(Qp) be a point with finite order n such that (n, p) = 1. Then we have that
x, y ∈ Zp.

The next part of the section will then be focused on removing this (n, p) = 1 condition.

4.1 Filtration on E1(Qp)

The proof of Lemma 4 will follow once we further understand the structure of E1. Before we
get there, we begin by giving a characterization of Qp-rational points on the E.

Lemma 5. Let P = (x, y) be a Qp-rational point on the elliptic curve E : y2 = x3 + ax + b with
a, b ∈ Zp. Then there exists some x′, y′, q ∈ Zp such that x = x′/q2 and y = y′/q3 such that
(x′, q) = (y′, q) = 1.

The same proof would also give the same conclusion for Q-rational points on an elliptic
curve with coefficients in Z.

Remark 4. Actually we only used the property of Z and Zp being UFDs, so we can also formu-
late a version of this lemma for general UFDs.

Proof. Let x = r1/s1 and y = r2/s2 with r1, r2 ∈ Zp and s1, s2 ∈ Zp such that (r1, s1) = (r2, s2) =
1. Since we are working with Zp where there is unique factorization, it suffices to prove that
s31 | s22 and s22 | s31. This is because if this divisibility is true then there exists u ∈ Z×p such that
s31 = us22 with (us1)

3 = (u2s22)
2. Consider replacing s1 by us1 and s2 by us22, then s31 = s22 which

gives the desired conclusion that s1 = q2 and s2 = q3 for some q ∈ Zp by unique factorization
on Zp.

Plugging in our values for x and y and then clearing denominators, we get s31r
2
2 = s22r

3
1 +

as22s
2
1r1 + cs22s

3
1. Since (s2, r2) = 1 it follows that s22 which divides the RHS must divide s31.

Similarly, since s1 divides the LHS, it must also divide the RHS and in particular s1 | s22r31. But
(s1, r1) = 1 and so s1 | s2. Now, s31 divides the LHS and s31 | as22s21r1 + cs22s

3
1 since s1 | s2. This

in turn implies that s31 | s22r31 which implies that s31 | s22, as desired.
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Utilizing Lemma 5, note that the projective Qp-rational points on our elliptic curve are of
the form (x : y : 1) = (x′/q2 : y′/q3 : 1) = (qx′ : y′ : q3). This allows us to put a structure to the
kernel of reduction E1(Qp) by studying the level of the points.

Definition 9. The level function ` : E1(Qp)→ N maps a point (qx′ : y′ : q3) to vp(q).

Note that `(x, y) ≥ 1 iff (x, y) ∈ E1(Qp). Consider the set En of points of level at least n;
precisely, let En = {(x, y) ∈ E1 : `(x, y) ≥ n}. It is clear that we have the nesting E0 ⊃ E1 ⊃
E2 ⊃ · · · ⊃ En ⊃ · · ·. It will turn out that actually En are groups.

Lemma 6. The group En satisfy E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · ·. Additionally, we have the exact
sequence for n ≥ 1 of

0→ En+1 → En → Z/pZ→ 0

and when n = 0 we have
0→ E1(Qp)→ E0(Qp)→ Ens(Fp)→ 0.

In technical jargon, this is called the p-adic filtration on E1(Qp). To prove that En are groups,
we will reduce this to the proof that reduction modulo p is a group homomorphism.

Proof. We want to pick out level n points on E, preferably via some suitable coordinate trans-
formation and then studying reduction modulo p of E.

One possible coordinate transformation is to consider xn = p2nx, yn = p3ny and zn = z. It
can be checked that (xn : yn : zn) lie on the elliptic curve En : y2z = x3 + p4naxz2 + p6nbz3. If
we reduce En modulo p then we get En : y2z = x3. Write this reduction map as πn : E(K) →
En(Fp).

Let us study the image of point P = (x : y : 1) = (x′q : y′ : q3) under πn. It is the reduction
modulo p of (p2nx′q : p3ny′ : q3). In particular, we have the following cases:

• If 1 ≤ `(P ) < n, then we have that under the coordinate change it maps to

(p2nx′q : p3ny′ : q3) = (p2n−`(P )x′q : p3n−3`(P )y′ : p−3`(P )q3)

where by definition of `(P ) we have that p−3`(P )q3 is a p-adic unit. The first two coordi-
nates are divisible by p, and so πn(P ) = [0 : 0 : 1] is the singular point.

• If 1 ≤ `(P ) = n, then by considering (p2n−`(P )x′q : y′ : p−3`(P )q3) as before and since
(y′, p) = (y′, q) = 1 it follows that πn(P ) is an affine non-singular point.

• If ` > n, then we have that under the coordinate change it maps to

(p2nx′q : p3ny′ : q3) = (p−nx′q : y′ : p−3nq3)

and so πn(P ) = (0 : 1 : 0) = O, which is the point at infinity.

Souping that up, we have that En+1 is the kernel of πn. By Lemma 2, it follows that En+1 is
a group. We can package all of this into a short exact sequence, where we recall that the modulo
p reduction is surjection as given by Lemma 3. Let the non-singular points on Em be Em

ns(Fp).
Then we can write

0→ Em+1 → Em → Em
ns(Fp)→ 0.

To finish up, it suffices to observe that Em
ns(Fp) ' Z/pZ.
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We end this section by deducing Lemma 4 from our work so far. We recall the statement of
the lemma.

Lemma 7. Let P = (x, y) ∈ E(Qp) be a point with finite order n such that (n, p) = 1. Then we have
that x, y ∈ Zp.

Proof. Suppose otherwise. Then it follows that `(P ) ≥ 1. Since
⋂

nEn = {O}, we can find some
m such that P ∈ Em\Em+1. The (chain of) homomorphism E → Em → Em/Em+1 sends P to a
nonzero element, and therefore an element of order p in Em/Em+1. But this is a contradiction
to the fact that (n, p) = 1.

In particular, it follows that if P has order n coprime to p then `(P ) = 0 so that P 6∈ E1(Qp),
as desired. It remains to consider points of order not necessarily coprime to p.

Remark 5. The proof of Lemma 4 given here is reminiscent of that for a problem in Problem
Set 8, which was to prove that two different roots of unity in Z×p of order prime to p cannot be
congruent to each other modulo pZp. It is fruitful to note the similarities in the set-up: there we
had the p-adic filtration on Zp given by the Ui, where Ui/Ui−1 ' Fp.

4.2 Removing the coprime condition on order

We begin with the observation that E1 cannot contain points of the form (x, 0) ∈ E1. This is to
be expected since our endgoal is that E1 is torsion-free, and points of the form (x, 0) have order
2. (Why?)

Lemma 8. Let E : y2 = x3 + ax+ b with a, b ∈ Zp. If P = (x, 0), then P ∈ E(Qp)\E1(Qp).

Proof. We know that x3 + ax + b = 0. Note that x ∈ Zp. Indeed, suppose otherwise. Then we
have that vp(x3) = 3vp(x), and vp(ax+ b) ≤ max{vp(x) + vp(a), vp(b)} but since vp(a), vp(b) ≤ 0
while vp(x) < 0 it follows that vp(x3) 6= vp(−ax− b), which is a contradiction.

Since x ∈ Zp, it follows that `(P ) = 0. Recall that P ∈ E1(Qp) iff `(P ) ≥ 1. This is the desired
constradction.

In this subsection, we will work with the map u : E1 → Zp given by u(P ) = x/y for
P = (x, y) and we also set u(O) = 0. The result that we just proved shows that this is a
well-defined map since we do not need to worry about y = 0. By Lemma 5, we can write
P = (x′/q2, y′/q3) and so u(P ) = q·x′/y′. In particular, we have that p`(P ) | u(P ) or equivalently,
|u(P )| ≤ p−`(P ). We can express this information compactly in the following diagram.

E(Qp) E0 E1 E2 E3 · · ·

pZp p2Zp p3Zp · · ·

u u u

Remark 6. If one knows some Lie groups, then it is natural to want to study the group of points
on the elliptic curve in a neighborhood of the identity, which in this case is O = (0 : 1 : 0). The
coordinate transformation of (x/y, 1/y) serves to bring O to the origin and then we can study
the transformed elliptic curve in a neighborhood around the origin. This can be thought of as
the motivation for u.
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Since by Lemma 6 it follows that En/En+1 ' Z/pZ has order p, for any point P ∈ En\En+1,
we have that mP ∈ En\En+1 for (m, p) = 1. On the other hand, we can only conclude that
pP ∈ En+1. We would ideally like to show that pP ∈ En+1\En+2 which would conceivably
allow us to do some form of induction to show that there is no points of prime power order, and
then piecing things together we can then show that E1(Qp) is torsion-free. We can equivalently
write pP ∈ En+1 as `(pP ) ≥ n+ 1 and so |u(pP )| ≤ |p||u(P )|. Inducting, we see that |u(mP )| ≤
|m||u(P )| for all integers m. To get conclusions of the form pP ∈ En+1\En+2, we would really
like equality to hold.

Lemma 9. For all P ∈ E1 and all integers m we have that |u(mP )| = |m| · |u(P )|.

There is actually an easier way to deduce that E1(Q) is torsion-free from this lemma.

Corollary 1. E1(Q) is torsion-free.

Proof. Suppose for the sake of contradiction that P ∈ E1 has finite order m. Then applying
Lemma 9, we get that 0 = |u(mP )| = |m| · |u(P )|. But m ≥ 1 implies that |m| 6= 0 so that P = O,
a contradiction.

If u was a homomorphism then Lemma 9 is straightforward. However, since we are ef-
fectively zooming in to a neighborhood of the elliptic curve around O, we would not ex-
pect the group law to be preserved and in general u may not be a homomorphism. While
u(P1 +P2)−u(P1)−u(P2) is not necessarily 0, it turns out that its value is small p-adically, and
this approximate homomorphism is good enough for us.

Lemma 10. For all P1, P2 ∈ E1, we have the inequality

|u(P1 + P2)− u(P1)− u(P2)| ≤ max{|u(P1)|5, |u(P2)|5}.

Proof. It is easy to check if one of P1, P2, P1+P2 isO. For example, if P1+P2 = O then P2 = −P1

and so |u(P1 + P2)− u(P1)− u(P2)| = |u(O)− u(P1)− u(−P1)| = 0.
So WLOG P1, P2, P1 + P2 all lie in the affine patch and |u(P2)| ≤ |u(P1)| = p−n. We aim to

get the inequality in question via applications of Vieta’s formulas, since the group law tells us
P1 + P2, P1 and P2 lie on the same line. We can then intersect this line with the elliptic curve to
obtain the relevant coordinates.

Recall the coordinate transformation we made earlier, where we send (x : y : z) on E :
y2z = x3 + axz2 + bz3 to (p2nx : p3ny : z) on En : y2nzn = x3n + p4naxnz

2
n + p6nbz3n. Under

this coordinate transformation, note that since by definition P1, P2 ∈ E1 so that upon reduction
they do not map to the singular point (0, 0), the line through the reductions of P1 and P2 and
−P1 − P2 does not go through the origin. After reduction the line is therefore of the form
z = rx + sy for some r, s ∈ F×p . This implies that before reduction, in (xn, yn, zn) coordinates,
the line `n has the form zn = rxn + syn for some r, s ∈ Zp.

In particular, we can intersect `n andEn to obtain 0 = c3(xn/yn)3+c2(xn/yn)2yn+c1(xn/yn)+
c0, where c3 = 1 + p4nar2 and b2 = 2p4nars + 3p6nbr2s. Note that the roots to this equation
are given by −p−nu(P1 +P2), p−nu(P1) and p−nu(P2) and by Vieta’s formulas the sum of these
roots is −c2/c3. In other words, we get that p5n | pnc2/c3 = u(P1 + P2) − u(P1) − u(P2) as
desired.

We will now be able to deduce Lemma 9, which we restate here for convenience.
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Lemma 11. Let G be a group. Suppose u : G→ pZp is a map (not necessarily a homomorphism!) such
that:

• u(−g) = −u(g),

• |u(ag)| ≤ |a| · |u(g)|,

• |u(g + h)− u(g)− u(h)| ≤ max{|u(g)|5, |u(h)|5},

for all g, h ∈ G. Then we have that |u(ag)| = |a| · |u(g)| for all a ∈ Z and g ∈ G.

Proof. We will first show that u(ag) and au(g) are p-adically close in value. Specifically, we
prove that |u(ag)− au(g)| ≤ |u(g)|5. Write |u(g)| = p−k so that it suffices for us to prove that
p5k | u(ag)−a·u(g). This follows from induction, where bases cases a = 0, 1 are straightforward.
The induction step follows from |u((a+ 1)g)− u(ag)− u(g)| ≤ max{|u(ag)|5, |u(g)|5}.

Now, for the actual lemma, note that when (a, p) = 1 it is relatively straightforward: writing
|u(g)| = p−k < 1, if p - a then pk ‖ au(g) but we also know from our earlier work that p5k |
u(ag)− au(g) and so it follows that pk ‖ u(ag) as well, which proves the desired.

To finish up, we effectively induct on the largest power of p dividing a. In particular, it suf-
fices to show that if the lemma is true for a then it is also true for pa. Begin with |u(pag)− pu(ag)| ≤
|u(ag)|5. Similarly as before, it follows that we must have |u(pag)| = |pu(ag)| = |pa||u(g)|, as
desired.

5 Proof of the Nagell-Lutz theorem

Now we are finally in a position to prove the Nagell-Lutz theorem, which we recap here for
convenience.

Theorem 4 (Nagell-Lutz Theorem). The group of rational torsion points on an elliptic curve E(Q) is
finite. If (x, y) 6= O is a point of finite order, then x, y ∈ Z.

The strategy is to study the torsion points on Qp, which we by now we have the tools to
understand, for various values of p which taken together would allow us to deduce properties
of torsion points over Q.

Proof. Let O be the group of points on E(Q) and Op be the group of points on E(Qp) for some
prime p.

Suppose P = (x, y) ∈ O is a torsion point and since O ⊂ Op, we can use our results in the
previous sections about Qp-rational torsion points. In the previous section we showed that E1

is torsion-free, and in particular `(P ) = 0 so that x, y ∈ Zp. Since this is true for all choices of p,
it follows that x, y ∈ Z.

Further, since E1 is torsion free, it follows that the group of torsion points is isomorphic to
a subgroup of E0/E1 ' Ens(Fp) by Theorem 3 for any prime p with good reduction. Note that
any prime p that does not divide the discriminant of E is a prime with good reduction. (Why?)
It immediately follows that the torsion group is finite, as desired.

Remark 7. Barry Mazur [Maz78] actually gave a complete characterization of the possibilities
for the group of torsion points. He showed that the torsion group of E(Q) is isomorphic to
either Z/nZ or Z/2Z⊕ Z/mZ where n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} and m ∈ {1, 2, 3, 4}.
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