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1 Chernoff-Crámer Method

(�) Write the log-MGF of RV Z as ψZ(λ) = logEeλZ . Then we have

P[Z ≥ t] ≤ EeλZ

eλt
= exp(−(λt− ψZ(λ))) ≤ exp(−ψ∗

Z(λ))

where ψ∗
Z(t) = supλ≥0(λt− ψZ(λ)).

Example 1.1. When Z ∼ N(0, σ2) then ψ∗
Z(t) =

t2

2σ2 which recovers Chernoff’s:

P[|Z − E[Z]| ≥ t] ≤ e−
t2

2σ2 .

This same bound holds for Z ∼ D where D is sub-Gaussian with parameter σ2 i.e. ψZ(λ) ≤ λ2σ2

2 . It is

not too difficult to check that Var[Z] ≤ σ2 in this case. (�: Taylor expand eλZ)

Claim 1.2 (Hoeffding’s). Let X be such that EX = 0 and X ∈ [a, b] almost surely. Then ψ′′
X(λ) ≤ (b−a)2

4 .

In particular X is sub-Gaussian with parameter (b−a)2
4 .

That is, bounded RV’s are sub-Gaussian. (“Obviously”, since the tails become 0)

Proof. Just compute the double derivative: (first derivative is ψ′
X(λ) = EXeλX

EeλX )

ψ′′
X(λ) =

EX2eλXEeλX − (EXeλX)2

(EeλX)2

=

∫
y2(e−ψY (λ)dλy)dP −

(∫
y(e−ψY (λ)dλy)dP

)2

and the desired conclusion follows (easy to upper bound variance of RV supported on [a, b] by (b−a)2
4 ) by

considering the tilited measure dPλ = (e−ψY (λ)dλy)dP . The second part follows from Taylor expansion of

ψX(λ).

Corollary 1.3 (Chernoff). Let Xi be independent random variables supported on [ai, bi] for 1 ≤ i ≤ n. Then

for any t > 0,

P

[
n∑
i=1

(Xi − EXi) ≥ t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Theorem 1.4 (Bennett). Let Xi be independent random variables supported on [−ci, ci] for 1 ≤ i ≤ n.

Suppose E[Xi] = 0, Var[Xi] = σ2
i and ν =

∑
o σ

2
i . Then for S =

∑
iXi, we have

P[S ≥ t] ≥ exp

(
− t2

2(ν +maxi cit/3)

)
.
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We incorporate variance information here, so when ν ≪ maxi cit we get better bounds than Chernoff.

(�: Poisson tails. The whole point is to show that the tails of Xi

c behave like Poi(σ2
i /C) − σ2

i . The key

fact is if Y = Z − ξ for Z ∼ Poi(ξ) then ψ∗
Y (t) = ξh1(t/ξ) where h1(·) is the binary entropy function.)

Proof. Taylor expand

ψXi(λ) = E[eλXi ] =

∞∑
k=0

λk

k!
E[Xk

i ]

≤ 1 +

∞∑
k=2

λk

k!
E[ck−2X2

i ]

= 1 +

∞∑
k=2

λkck−2σ2
i

k!

= 1 +
σ2
i

c2
(eλc − 1− λc)

≤ exp

(
σ2
i

c2
(
eλc − 1− λc

))
.

In particular, let Y = Z−ξ for Z ∼ Poi(ν
2

c ) so that ψS(λ) ≤ ψY (λc). This in turn implies ψ∗
S(t) ≥ 1

cψ
∗
Y (t) =

ν
c2h1

(
ct
ν2

)
and the final step is to use the numerical inequality h1(x) ≥ x2

1+
x
3
.

2 Tensorization of variance – Efron Stein

(�) Let Z = f(X1, . . . , Xn) for i.i.d. Xi. We endeavor to write

Z − EZ =
∑
i

∆i

for uncorrelated ∆i so that Var[Z] ≤
∑
i E∆2

i by “tensorization”.

The most natural way to find ∆i is to use a Doob’s martingale: think of {Xi} as a stream with Xi

revealed at time i and we let ∆i encode the additional information revealed at time i. Intuitively ∆i and

∆j are uncorrelated. Precisely, let Ei[Z] := E[Z |X1, . . . , Xi] then for ∆i = Ei[Z] − Ei−1[Z] we have

the telescoping sum Z − E[Z] =
∑
i∆i with E[∆i∆j ] = E[∆iE[∆j |X1, . . . Xi]] = 0. This way, Var[Z] ≤∑

i E∆2
i ≤

∑
i E[(Z − E[Z |X1, . . . , Xi−1, Xi, . . . , Xn])

2] because we can use Jensen’s inequality and the

identity Ei[Z − E[Z |X1, . . . , Xi−1, Xi, . . . , Xn] = Ei−1[Z].

We simplify using Var[Y |X] = E[(Y − E[Y |X])2 |X] so that we get

Var[Z] ≤ E

[∑
i

Var[Z |X1, . . . , Xi−1, Xi+1, . . . , Xn]

]
.

Finally, we also have

E

[∑
i

Var[Z |X1, . . . , Xi−1, Xi+1, . . . , Xn]

]
=

1

2

n∑
i=1

E[Z − f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn))

2]

= E inf
Zi:(X1,...,Xi−1,Xi+1,...Xn)-measurable

E[(Z − Zi)
2]

where X ′
i is an independent copy of Xi and the second equality is just the variational/least squares charac-

terization of variance.
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Theorem 2.1 (Bounded differences V1). Let Xi be independent random variables on Ω and suppose f : Ωn →
R satisfies

sup
x1,...,xn,x′

i

|f(x1, . . . , xn)− f(x1, . . . , xi, xi+1, . . . , xn)| ≤ ci

for some ci > 0 for each i ∈ [n]. Then

Var[Z] ≤ 1

4

n∑
i=1

c2i .

Remark 2.2. When applying bounded differences in graph settings, it is worthwhile to consider whether the

edge exposure martingale or vertex exposure martingale gives better bounds.

Theorem 2.3 (Convex Poincaré). Let X1, . . . , Xn be independent random variables taking values in [0, 1] and

let f : [0, 1]n → R be a separately convex function whose partial derivatives exist. Then Z = f(X1, . . . , Xn)

satisfies

Var[Z] ≤ E∥∇f∥2.

Proof. It suffices to note that

n∑
i=1

E[Z − inf
Xi

f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn))

2] ≤
n∑
i=1

E

[(
∂f

∂xi
(Xi)

)2

(Xi −X ′
i)

2

]
≤ E[∥∇f∥2].

Example 2.4. LetM ∈ Rn×n be a random matrix with entriesMij independent and taking values on [0, 1].

Then its largest singular value satisfies Var[σ1(M)] ≤ 4.

Theorem 2.5 (Gaussian Poincaré). Let X = (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian random

variables. Let f : Rn → Rn be any continuously differentiable function. Then Z = f(X1, . . . , Xn) satisfies

Var[Z] ≤ E∥∇f∥2.

We give two proofs of this, because making a mock qual for Liane made me actually read up about Markov

semi-groups. The first proof illustrates tensorization. (�: Efron-Stein is fundamentally about splitting an

n-dimensional variance into a sum of 1-dimensional variances; so we can just “tensorize” the 1-dimensional

bound)

Proof 1 of Theorem 2.5. As described above, it suffices to prove for X ∼ N (0, 1), we have

Var[f(X)] ≤ E[∥∇f(x)∥2].

This 1-dimensional Gaussian Poincaré is really a central limit statement, in which let {εi}ni=1 be i.i.d.

Rademacher random variables so that for Sn = 1√
n

∑n
i=1 εi we have f(Sn)

n→∞−−−−→ f(X). To finish up just

Taylor expand ∣∣∣∣f (Sn − εi√
n
+

1√
n

)
− f

(
Sn − εi√

n
− 1√

n

)∣∣∣∣ ≤ 2|f ′(Sn)|√
n

+
2 supx |f ′′(x)|

n

and apply Efron-Stein.

Before we give proof 2, we remind ourselves some notations regarding Markov semi-groups. Let (Xt) be

a Markov process on some state space, let Pt be its semi-group and let L be the generator of this semi-group.

Suppose Xt has an invariant measure µ.
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Definition 2.6. The bilinear form E , also known as the Dirichlet form, is defined to be

E(f, g) := −(f, Lg) = −
∫
fLgdµ.

We will always assume that (Xt) is reversible so that L is self-adjoint.

Definition 2.7. The covariance w.r.t. the invariant measure Covµ is defined to be

Covµ(f, g) :=

∫
fgdµ−

∫
fdµ

∫
gdµ.

Lemma 2.8 (Covariance Lemma). Covµ(f, g) =
∫∞
0

E(f, Ptg)dt.

We define the Ornstein-Uhlenbeck process given by the SDE:

dXt = −Xtdt+
√
2dBt.

Alternatively it is realized by the Brownian motion as

Xt = e−tX0 + e−tBe2t−1.

It turns out that the generator and Dirichlet form for this process is given by (Lf)(x) = f ′′(x)− xf ′(x) and

E(f, g) = EZ [f ′(Z)g′(Z)]. Furthermore the invariant distribution of the OU process is N (0, 1).

Now generalize this to multiple dimensions the obvious way. Note that we also have the identity ∇(Ptg) =

e−t(Pt∇g) which is obvious from the BM representation of the OU process.

Proof 2 of Theorem 2.5. This literally follows from Lemma 2.8 and Cauchy-Schwarz, along with the fact

that Pt is contracting in L2(µ) which itself is a consequence of Jensen’s. We just compute away:

Covµ(f, g) =

∫ ∞

0

E(f, Ptg)dt

=

∫ ∞

0

(Eµ[∇f · ∇(Ptg)]dt

=

∫ ∞

0

(Eµ[∇f · e−t(Pt(∇g))]dt

=

∫ ∞

0

e−t⟨∇f, Pt(∇g)⟩dt

≤
∫ ∞

0

e−t∥∇f∥L2(µ)∥Pt(∇g)∥L2(µ)dt

≤
∫ ∞

0

e−t∥∇f∥L2(µ)∥∇g∥L2(µ)dt

= ∥∇f∥L2(µ)∥∇g∥L2(µ).

3 Tensorization of entropy – Entropy method

The aim of this section is to bootstrap what we saw in the previous section to get stronger tail bounds.

To that end we will work with entropy instead of variance. In parallel with the Poincaré inequalities we will

instead prove log-Sobolev inequalities.
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3.1 Motivating examples of entropy tensorization: Han’s inequality

Definition 3.1 (Shannon entropy). Let X be a RV with distribution P (X = x) = p(x). Then

H(X) := E[− log p(X)] = −
∑
x

p(x) log p(x).

We have the chain rule:

H(X1, . . . , Xn) =

n∑
i=1

H(Xi |X1, . . . , Xi−1).

Definition 3.2 (KL divergence). Let P and Q be two probability measures on countable Ω. Then

D(Q ∥ P ) =
∑
x

q(x)
q(x)

p(x)
.

There is also a chain rule for KL-divergence; but to simplify notation we write X1:i = (X1, . . . , Xi):

D(Q ∥ P ) =
n∑
i=1

D(QX1 |X1:i−1
∥ PX1 |X1:i−1

|QX1:i−1
).

The chain rule illustrates tensorization. We have an “analogue” for Efron-Stein in these contexts as:

Theorem 3.3 (Han’s inequality for Shannon entropy). For arbitrary discrete random variables X1, . . . , Xn,

H(X1:n) ≤
1

n− 1

n∑
i=1

H(X1, . . . , Xi−1, Xi+1, Xn).

Theorem 3.4 (Han’s inequality for KL-divergence). Let Ω be a countable set and let P and Q be product

probability distributions on Ωn. Then

D(Q ∥ P ) ≥ 1

n− 1

n∑
i=1

D(QX(i) ∥ PX(i)),

where QX(i) = Q1 ⊗ · · · ⊗Qi−1 ⊗Qi+1 ⊗ · · · ⊗Qn.

The main idea in the proof of Theorem 3.3 is that conditioning only reduces entropy, which itself is

basically Jensen’s. And then we can deduce Theorem 3.4 from Theorem 3.3. Here’s a more conceptual way

to understand Theorem 3.3. Let’s write Theorem 3.3 as

n∑
i=1

H(X1:n)−H(X(i)) ≤ H(X1:n).

Let us also define f : {0, 1}n → R by f(z1, . . . , zn) = H(Xi : zi = 1) then we can artificially rewrite the

above as
n∑
i=1

(f(x1, . . . , xn)−min
xi

f(x1, . . . , xn)) ≤ f(x1, . . . , xn) (1)

which is reminiscent of the kind of self-bounding conditions arising in bounded differences. To recap, we can

prove bounded differences for self-bounding functions i.e. f : Ωn → R such that for each i there exists some

fi : Ω
(i) → R such that:

• 0 ≤ f(x)− fi(x
(i)) ≤ 1,

•
∑n
i=1(f(x1, . . . , xn)− fi(x1, . . . , xn)) ≤ f(x1, . . . , xn).
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It turns out that this kind of self-bounding condition is true for all sub-modular functions so we can in

fact prove Han’s for all sub-modular functions.

Lemma 3.5. For a set S of random variables, let H(S) = H(Xi : i ∈ S) be the joint entropy. Then for any

sets A,B of random variables, the sub-modularity of H refers to the fact that

H(A ∪B) +H(A ∩B) ≤ H(A) +H(B).

Indeed to prove (1) just apply submodularity to A = [i] and B = [n]\{i} and then we’ll get a telescoping

sum.

Example 3.6 (Isoperimetry on Boolean hypercube). For any A ⊂ {0, 1}n we have |E(A,A)| ≥ |A|(n −
log2 |A|). (�: Let X ∼unif A, then H(X)−H(X(i)) tells us what happens along direction i; in particular we

check H(X)−H(X(i)) = 2
|A|#{edges in direction i}, then apply Han’s.)

3.2 Bounded differences with exponential tails: Introduction to Herbst’s argu-

ment

Definition 3.7. We define the entropy of a RV X as

Ent[X] = E[X logX]− E[X]E[logX].

Remark 3.8. This is related to KL divergence as follows: if Z is the Radon-Nikodym derivative of Q ≪ P

and X ∼ P , then Ent[Z] = D(Q ∥ P ).

Lemma 3.9 (Entropy Tensorizes). Same set-up as before, so X = f(X1:n). Then

Ent[Z] ≤ E

[
n∑
i=1

Ent(i)[Z]

]
.

Proof 1. We make use of Remark 3.8 so define a measure Q with pmf given by q(x) = p(x)f(x) so that

D(Q ∥ P ) = Ent[Z]. We can compute that Theorem 3.4 basically implies the tensorization we desire.

Proof 2. Begin with the telescoping sum

Ent[Z] =

n∑
i=1

E[ZUi]

where Ui := log E[Z |X1,...,Xi]
E[Z |X1,...,Xi−1]

and then invoke the dual characterization of entropy which gives

Ent[Z] = sup
X:E[eX ]=1

E[ZX] (2)

and this itself is a consequence of Young’s inequality. (by homogeneity we may assume that E[Z] = 1; now

use uv ≤ u log u− u+ ev, so that

E[ZX] ≤ E[Z logZ]− 1 + E[eX ] ≤ E[Z logZ] = Ent[Z]

and the converse follows by letting ZN = min{max{Z,N−1}, N} and letting X = log ZN

EZN
.)

Lemma 3.10 (Herbst’s argument). Let Z be an integrable random variable such that for some ν > 0, we

have for every λ > 0,

Ent[eλZ ] ≤ λ2ν

2
EeλZ .

Then, for every λ > 0,

ψZ−EZ(λ) ≤
λ2ν

2
.
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Proof. We have that the log-Laplace transform expands ψZ−EZ(λ) = logE[eλZ ]− λE[Z].
(�) Check that

d

dλ

ψZ−E[Z](λ)

λ
=

Ent[eλZ ]

λ2E[eλZ ]
.

(Alternatively, λψ′
0(λ)− ψ0(λ) =

Ent[eλZ ]
E[eλZ ]

where ψ0(λ) = ψZ−E[Z](λ).)

L’Hopital’s shows that
ψZ−E[Z](λ)

λ → 0 as λ→ 0. Now integrate:
∫ λ
0

d
dλ

ψZ−E[Z](λ)

λ dλ ≤
∫ λ
0
ν
2 .

Theorem 3.11 (Bounded differences V2). Let Xi be independent random variables on Ω and suppose

f : Ωn → R satisfies

sup
x1,...,xn,x′

i

|f(x1, . . . , xn)− f(x1, . . . , xi, xi+1, . . . , xn)| ≤ ci

for some ci > 0 for each i ∈ [n]. Let ν = 1
4

∑n
i=1 c

2
i . Then for t ≥ 0, we have

P[|Z − EZ| > t] ≤ e−
t2

2ν .

Proof. • Lemma 3.10 implies we we need to bound Ent[eλZ ]
E[eλZ ]

which we can do so using Claim 1.2:

Ent[eλZ ]

E[eλZ ]
= λψ′

0(λ)− ψ0(λ) =

∫ λ

0

θψ′′
0 (θ)dθ ≤

c2iλ
2

8
.

• Tensorization of entropy =⇒ tensorization of Laplace transforms. (�) Plug in eλZ for the random

variable in Lemma 3.9.

E[eλZ ] ≤ E

[
n∑
i=1

Ent(i)[eλZ ]

]

≤ E

[
n∑
i=1

c2iλ
2

4
E(i)[eλZ ]

]

≤ E[eλZ ] · νλ
2

2

• Apply Lemma 3.10 again and finish up with the Chernoff-Crámer argument.

3.3 log-Sobolev inequalities (LSI)

As in the case of the Poincaré inequality, we will give two proofs of the log-Sobolev inequality. After

giving the semi-group proof we will also introduce a unified way to think about these inequalities.

Theorem 3.12 (LSI for Bernoulli RV). Let X1, . . . , Xn be i.i.d. Bernoulli RV. Then

Ent[f2] ≤ 2E[∥∇f∥2].

Proof. Tensorize a2 log a2

2 + b2 log b2

2 −
(
a2+b2

2

)
log

(
a2+b2

2

)
≤ (a−b)2

2 .

Theorem 3.13 (LSI for Gaussian RV). Let X = (X1, . . . , Xn) be a vector of n independent standard normal

random variables. Then

Ent[f2] ≤ 2E[∥∇f∥2].

Proof 1 of Theorem 3.13. Use CLT and combine with Theorem 3.12.
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First, recall that both variance and entropy are both special cases of ϕ-entropy.

Definition 3.14. For a given convex function ϕ and a random variable Z, we define the ϕ-entropy to be

Entϕ[Z] = E[ϕ(Z)]− ϕ(E[Z]).

Lemma 3.15 (Semi-group expression for ϕ-entropies). Insert some technical conditions on ϕ and f to make

everything well-defined:

Entϕ[f ] =

∫ ∞

0

E[ϕ′′(Ptf)|∇Ptf |2]dt.

Proof. (�) Define α(t) := E[ϕ(Ptf)]. Note that α(0) = E[ϕ(f)] and

α(∞) = E[ lim
t→∞

ϕ(Ptf)] = ϕ(E[f ]).

This means Entϕ[f ] = α(0)− α(∞).

Finish up with chain rule and integration by parts:

α′(t) = E[ϕ′(Ptf)L(Ptf)]

= E[⟨∇ϕ′(Ptf),∇(Ptf)⟩]

= E[ϕ′′(Ptf)|∇Ptf |2].

Proof 2 of Theorem 3.13. When ϕ = x log x, note that Lemma 3.15 gives

Ent[f ] =

∫ ∞

0

E
[
|∇Pt[f ]|2

Pt[f ]

]
dt

=

∫ ∞

0

e−2tE
[
|Pt[∇f ]|2

Pt[f ]

]
dt

‡
=

∫ ∞

0

e−2tE


∣∣∣Pt [∇f√

f
·
√
f
]∣∣∣2

Pt[f ]

 dt
≤

∫ ∞

0

e−2tE

Pt
[
∥∇f∥2

f

]
· Pt[f ]

Pt[f ]

 dt
≤ 1

2
E
[
∥∇f∥2

f

]
where the inequality follows from Cauchy-Schwarz. This implies that Ent[f2] ≤ 2E[∥∇f∥2].

Remark 3.16. We can write both Poincaré’s and LSI in a unified form as:

• Var[Ptf ] ≤ e−2tVar[f ]

• Ent[Ptf ] ≤ e−2tEnt[f ].

Example 3.17. We can get the Gaussian concentration inequality for Lipschitz functions by combining

Herbst’s argument with Theorem 3.13 for eλZ/2. Precisely, if f : Rd → R is Lipschitz then for Z = f(X1:n)

we have

P[|f(Z)− E[Z]| ≥ t] ≤ 2 exp(−ct2).
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Here is another proof. First WLOG E[Z] = 0. The goal is to show ψZ(λ) ≤ Cλ2. Let Y be an

independent copy of X, then Jensen’s gives E[e−λf(y)] ≥ 1 so that

E[eλf(X)] ≤ E[eλ(f(X)−f(Y ))].

Now, write f(X)− f(Y ) =
∫ π/2
0

d
dθf(Y cos θ +X sin θ)dθ. Now, write

E[eλ(f(X)−f(Y ))] ≤ 2

π

∫ π/2

0

E
[
exp

(
πλ

2

d

dθ
f(Y cos θ +X sin θ)

)]
≤ 2

π

∫ π/2

0

E
[
exp

(
πλ

2
∇f(Y cos θ +X sin θ) · (−Y sin θ +X cos θ)

)]
but (−Y sin θ + X cos θ) ∼ N (0, 1)d for fixed Y cos θ + X sin θ and furthermore −Y sin θ + X cos θ is inde-

pendent of Y cos θ +X sin θ. This gives the desired tails.

3.4 Modified log-Sobolev inequalities (MLSI)

The motivation for this is in Example 3.17 we actually only need LSI for eλZ/2. The MLSI shold be

thought of as a tensorization specific to the Laplace transform.

Lemma 3.18 (Modified log-Sobolev inequality). Let X1, . . . , Xn be independent random variables, let Z =

f(X1, . . . , Xn) and Zi = fi(X
(i)) where fi is an arbitrary function on X1, . . . , Xi−1, Xi+1, . . . , Xn, andlet

ϕ(x) = ex − x− 1. Then for all λ ∈ R, we have

Ent(eλZ) ≤
n∑
i=1

E[eλZϕ(−λ(Z − Zi))].

Remark 3.19. As states this MLSI will only be able to give us right tails and not left tails, because we will

crucially always assume that Z − Zi > 0 so that we can use the bound ϕ(−x) ≤ x2/2. That is, a working

mathematicians’ version of MLSI is

Ent(eλZ) ≤ λ2
n∑
i=1

E[eλZ(Z − Zi)
2]. (3)

We need to introduce another variational formulation of Ent: (i.e. expected value minimizes expected

Bregman divergence which is f(y)− f(x)− f ′(x)(y − x))

Ent[Z] = inf
u>0

E[Z(logZ − log u)− (Z − u)]. (4)

Proof of Lemma 3.18. It suffices to note that for Y = eλZ and Yi = eλZi , using (4) we have

Ent(i)[eλZ ] ≤ E(i)[Y (log Y − log Yi)− (Y − Yi)]

≤ E(i)[eλZλ(Z − Zi)− (eλZ − eλZi)]

= E(i)[eλZϕ(−(Z − Zi))]

and use tensorization of entropy.

The first application is a stronger form of bounded difference.

9



Theorem 3.20 (Bounded Difference V3). Let X1, . . . , Xn be independent random variables and let Zi =

infxi f(X1:i−1, xi, Xi+1:n). Suppose there is ν > 0 such that

n∑
i=1

(Z − Zi)
2 ≤ ν.

Then for all t > 0,

P[Z − EZ ≥ t] ≤ e−t
2/2ν .

Example 3.21. Let A = (aij) be a symmetric n× n matrix with each aij being independent Ber(−1,+1).

Let λ1(A) be the largest eigenvalue of A. Then

P[λ1(A)− Eλ1(A) ≥ t] ≤ e−
t2

8 .

Note that it is important here that we had an “average” type of bound for

v = max
x∈{−1,+1}n

n∑
i=1

(f(x)− f(x(i)))2.

Perhaps a more explicit way to spell this out is to think of bounded difference V2 as giving concentration

when the function f has bounded

n∑
i=1

max
x∈{±1}n

(f(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, x2, . . . , xi−1,−xi, xi+1, . . . , xn))
2

while this version gives concentration when f is bounded in terms of

max
x∈{±1}n

n∑
i=1

(f(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, x2, . . . , xi−1,−xi, xi+1, . . . , xn))
2

and the position of the max was critical so that we can use the same test vector (alá Courant-Fischer) for

all the coordinates and the apply the Cauchy-Schwarz inequality.

Next, we bootstrap Theorem 2.3 to have sub-Gaussian tails.

Theorem 3.22 (Right tails of convex, 1-Lipschitz functions). Let f : [0, 1]n → R be a separately convex,

1-Lipschitz function. Let Z = f(X1, . . . , Xn) where Xi are independent and supported on [0, 1]. Then for all

t > 0,

P[Z − EZ ≥ t] ≤ e−t
2/2.

Proof. It suffices to note that by convexity of f we have

n∑
i=1

(Z − Zi)
2 ≤

n∑
i=1

(
d

dxi
f(X)

)2

= ∥∇f∥2 ≤ 1.

Remark 3.23. Näıvely using 1-Lipschitz alone would have given
∑n
i=1(Z − Zi)

2 ≤ n, and so convexity is

crucial here. Furthermore, because we need Z − Zi ≥ 0 (why?), this method does not give left tails.
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4 Transportation method

Recall Remark 3.8 and (2) which combined implies that we have the following variational characterization

of log-Laplace transform/log MGF in terms of the KL-divergence:

ψZ−E[Z](λ) = sup
Q≪P

[λ(EQ[Z]− EP [Z])−D(Q ∥ P )].

Proof. In (2), let Z = dQ/dP be the Radon-Nikodym derivative and let U = λ(Z −E[Z])−ψZ−E[Z](λ).

(�) The key idea is that if for all Q ≪ P we have EQZ − EPZ ≤
√
2νD(Q ∥ P ), then it follows

that ψZ−EP [Z](λ) ≤ λ2ν
2 .

To prove EQZ − EPZ ≤
√
2νD(Q ∥ P ) we need to find a good coupling between P and Q.

Example 4.1. Let P be a product measure on Ωn, then for any A,B ⊂ Ωn measurable we have that the

Hamming distance between A and B satisfy

dH(A,B) ≤

√
n

2
· 1

P (A)
+

√
n

2
· 1

P (B)
.
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