
Convex Spherical Cubes
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The main point of this document is to also have some pictures, almost all were taken from this article
by Guy Kindler, Anup Rao, Ryan O’Donnell, Avi Wigderson about their work on spherical foams.

1 Background on Kelvin’s foam problem
The starting point for this work is the so-called Kelvin’s foam problem, first studied by Lord Kelvin: how
should we partition Rn into “bubbles” of volume 1 that minimizes average surface area?
Example 1.1. • In 2 dimensionswe could take the square latice which corresponds to a “bubble”with perimeter

4. It was conjectured by the Greeks that the hexagonal honecomb lattice is optimal and this was proven by
Hales [4].

• In 3 dimension we could take a cube which corresponds to a “bubble” with surface area 6.
Another way to think about how to cnstruct such bubbles is to build a lattice and then to take the Voronoi
cells around each lattice point. (Recall that the Voronoi cell of a lattice point is the bubble that includes all
points closer to this point than to any other lattice point.) Lord Kelvin proposed that the optimal solution in
3 dimensions was a slightly distorted form of the Voronoi foam given by the body-centered cubic lattice. This
truncated octahedron has a surface area of about 5.306.
Some physicists (Weaire and Phelan) ultimately found an even more optimal foam based on the crystal struc-
ture of some real-world crystal. Of note is that their foam no longer consists of translations of the same shape.
Their construction gives an average surface area of about 5.288. It is still an open question if this is the optimal
construction. There are more descriptions about this foam in the linked article by Kindler, Rao, O’Donnell
and Wigderson.

Figure 1: On the left is the Kelvin foam given by a distorted Voronoi foam of the body-centered cubic
lattice. On the right is Weaire and Phelan’s foam.

It’s natural to ask this question asymptotically. Here are some relatively easy bounds we can obtain:
- (Lower bound) By the isoperimetric inequality, we know that any cell of volume 1 has surface area
≳
√

n.
- (Upper bound) There’s an easy upper bound by considering the unit cube, which gives a surface
of 2n.

1

https://cacm.acm.org/magazines/2012/10/155546-spherical-cubes/fulltext
https://cacm.acm.org/magazines/2012/10/155546-spherical-cubes/fulltext


Now, we can ask which of the above bounds is actually closer to the truth. It turns out that the √n
bound we get from isoperimetric inequality is actually tight. Let us begin by seeing a proof for this fact
because it will introduce a key lemma that we will use to prove the main theorem.
Lemma 1.2 ([7, Lemma 3]). Fix n ∈ N and R > 0. Suppose that a convex body K ⊂ Rn satisfies K ⊃ RBn. Then,

voln−1(∂K)
voln(K)

≤
n
R
.

A picture speaks a thousand words so here is a (horribly drawn) pictorial depiction.

Proof. We can write:

vol(∂K) = lim
δ→0

vol((K + δBn) \ K)
δ

≤ lim
δ→0

vol((1 + δ/r)K \ K)
δ

=
n
r
· vol(K).

□

The slogan to remember is that containing a big ball implies a good bound on surface area. More
on this in a bit, but at first glance voln−1(∂K)

voln(K) is an odd quantity to consider since it is not scale-invariant.
Anyways, let us now see a proof for the tightness of the isoperimetric bound in this context of foams.
Theorem 1.3 (Folklore). The minimum average surface area of a foam in Rn is Θ(

√
n).

Proof. We can introduce a probability measure on the space of lattices as follows: identify the space Ln

of all lattice of covolume 1 with S Ln(R)/S Ln(Z). Let µn be the unique Haar measure on Ln that is S Ln(R)-
invariant. Then it is well-defined to consider a random covolume 1 lattice Λ according to µn. Last time I
talked about the following theorem from the geometry of numbers:
Theorem 1.4 (Siegel’s integral formula). For compactly supported, bounded and measurable f : Rn → R, we
have ∫

Ln

∑
x∈L\{0}

f (x)dµn(L) =
∫
Rn

f (x)dx.

Unrigorously, what Siegel’s formula tells us is the distribution of lattice points in a random lattice is
“as expected”. In particular, if we take f to be the characteristic function of the ball of radius r centered at
the origin, then the above basically says that on average a random lattice hasV(r)(:= volume of a ball with radius r)
nonzero vectors of length r.
Definition 1.5. For a lattice Λ ⊂ Rn, write λ1(Λ) to be the length of the shortest vector in Λ: so λ1(Λ) =
min{∥x∥2 : x ∈ Λ \ {0}}.
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Informally, the above tells us that with high probability λ1(Λ) ≳
√

n. It is not too difficult to make this
precise.

The foam construction we will take is the Voronoi cell construction mentioned in the examples above.
Formally, we have the following definition of the Voronoi cell as the set of poitns in space for which 0 is
the closest lattice point.
Definition 1.6. For a lattice Λ ⊂ Rn, define the Voronoi cell to be

Vor(Λ) = {y ∈ Rn : dist(y,Λ) = ∥y∥}.

In particular, note that Vor(Λ) contains a ball of radius λ1(Λ). By our earlier bound on λ1(Λ) and then
plugging this into Lemma 1.2, it follows that the surface area of Vor(Λ) is ≲ √n as desired. □

Moving forwards, our strategy would be to find lattices that do not contain short vectors and then to
take suitable Voronoi cells of such a lattice.

2 Background on the cubical foam problem
In this paper, the main problem studied is a restriction of the Kelvin foam problem. More precisely, they
consider foams that are periodic with respect to the integer lattice.

Cubical foam problem: What is the least surface area of a bubble that partitions Rd periodically
according to the integer lattice?

Example 2.1.
For the n = 2 case, the hexagonal lattice no longer works because we are restricting to consider tilings that are
periodic with respect to the integer lattice. The square lattice still orks with perimeter 4. However, Choe [3] showed
that the optimal solution is a slightly distorted form of the hexagonal lattice with perimeter 3.864.

Then optimal construction for the n = 3 case is still open. One possible construction is to “add thickness” to
Choe’s isosceles hexagon construction. However, Kindler, Rao, O’Donnell, Widgerson [6] gave the following better
construction of a bubble with surface area about 5.602.
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Once again, we can ask this same question asymptotically. It was shown in [6] and [1] that the
answer, as in the case of the Kelvin foam problem, is Θ(

√
n). We very briefly outline the method that

[6] adopts. The vague idea is to take a body produced via a procedure called Holenstein’s Consistent
Sampling Lemma [5], translate it according to a random shift and then at each iteration we add to the
body all the uncovered parts that the new translate to the original body. Here is a pictorial description
of this process, as always taken from [8].

Remark 2.2. In relation to the parallel repetition problem, Braverman and Minzer [2] showed that if we
imposed axis-symmetry conditions to the cubical foam problem we obtain a bound Θ(n/

√
log n).

3 On convex spherical cubes
The goal in this section is to prove the following.
Theorem 3.1 ([7, Theorem 1]). For every n ∈ N there is a convex spherical cube with surface area n1/2+o(1).

We’ll study the quantity in Lemma 1.2 slightly more and then give a very high level overview for the
strategy for the proof before delving into more details.

Even though the quantity voln−1(∂K)/voln(K) (for simplicity of notation I may sometimes drop the
indices for the dimension) for a convex body K is not scale-invariant, the nice property that it has is that
it is additive under product of convex bodies.
Lemma 3.2 ([7, Lemma 7]). If K1 and K2 are convex bodies such that K = K1 × K2 then

vol(∂K)
vol(K)

=
vol(∂K1)
vol(K1)

+
vol(∂K2)
vol(K2)

.

Proof. This follows from rearranging vol(∂K) = vol(∂K1)vol(∂K2) + vol(K1)vol(∂K2). □

The high level strategy that [7] use is to in some sense take a subspace V ⊂ Rn, project away from
V to get a sub-lattice of Zn, sparsify this sub-lattice to get rid of short vectors and then we get a Voronoi
cell with small boundary (in the same spirit as the proof of Theorem 1.3) and then recursively apply this
same procedure to Zn∩V . Ultimately we can take the bubble to be the product of the convex bodies given
by the Voronoi cells of these sparse lattices and use the above additivity property of Lemma 3.2 to get a
bound on the boundary of the bubble.

Now let us expand upon this proof strategy in slightly greater detail. A disclaimer is that in the
following write-up, I’m going to be imprecise in many places and happily lose no(1) factors so as to better
convey the gist of the argument rather than being bogged down by technical details. The main lemma
that we need for the purposes of sparsification is the following one on binary matrices with sparse rows
and s-wise independent columns.
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Lemma 3.3 ([7, Lemma 12]). Let n be a positive integer. For s ≪ n and m ≤ n such that n = Ω(m log m), there
exists a matrix A ∈ Matm×n({0, 1}) with the following properties:

• Any s of the columns of A are linearly independent over F2

• Every row of A has at most O(n/m) entries.
Proof. To construct A, we sample each column as a random vector with d = O(1) many entries that are 1.
We can then calculate that with high probability the second bullet above is satisfied, and a first moment
calculation also gives the first bullet above.

We’ll follow the analysis in [7] because it is pretty neat. Write m = s log n and let W(d) be a vector
obtained by doing a random walk on the Boolean hypercube {0, 1}m. We’ll consider the random matrix
A whose columns are given by m copies of i.i.d. W(d). Note that the probability that the ith row has an
entry 1 in the jth position is given by 1 − (1/m)d ≤ d/m because for it to be a 1 we need to have at least
flipped the jth position once on the randomwalk. In other words, the probability that the ith row has at
most ℓ ∼ n/m entries is then at least 1 − m

(
n
ℓ

)
(d/m)ℓ ≥ 1 − m(edn/(mℓ))ℓ ≫ 1.

Next, we need to check that for any s of the columns C1, . . . ,Cn of A are linearly independent. Let κ
be the number of S ⊂ [n] with |S | ≤ s such that ∑i∈S Ci , 0 (mod 2). We claim that it suffices to show that
E[κ] < 1/10. This is because byMarkov’s inequality itwould then follow that P[κ = 0] = 1−P[κ = 1] > 9/10.

Before we proceed, note that there is a nice property of this current set-up which is that if we have
t i.i.d. copies W1(d), . . . ,Wt(d) of W(d) then ∑t

i=1 Wi(d) has the same distribution as W(td). Using this
property, it follows that

E[κ] =
s∑

r=1

(
n
r

)
P[W(dr) = 0].

To finish up, we use the bound.
Claim 3.4. P[W(t) = 0] ≲ (t/m)t/2

Proof. We convert this to something we can apply Chernoff-Hoeffding on:

P[W(t) = 0] =
1

2m

m∑
k=0

(
m
k

) (
1 −

2k
m

)t

=

(
−

2
m

)t

Exi Bernoulli

 m∑
i=1

xi −
m
2

t
=

(
2
m

)t ∫ ∞

0
tyt−1P

 m∑
i=1

xi ≥ y +
m
2

 dy

≤ 2t
(

2
m

)t ∫ ∞

0
yt−1e−2y2/mdy

∼

(
2
m

)t

(t/2)! ∼ (t/m)t/2.

□

Plugging in this bound, it follows that

E[κ] ≤ 2
s∑

r=1

(
edd/2rd/2−1n

md/2

)r

≤ 2
s∑

r=1

(
edd/2rd/2−1n

md/2

)r

≤ 2
s∑

r=1

(0.01)r < 1/10.

□
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Remark 3.5. In [7], it is mentioned that this kind of argument is common in works about Low Density
Parity Check (LDPC) codes. I’m not too familiar with this line of work but if anybody has any ideas
about these literature please let me know. I’m specifically interested in if there are derandomized ways
to construct these sorts of “sparse” matrices, because this is the only source of randomness in the entire
proof.
Proof of Theorem 3.1. We induct on n. For small values of the dimension n, it suffices to use the square
grid bound of ∼ n.

Let A be the matrix given in Lemma 3.3 with m = n1−o(1) and s = n1−o(1) where we pick parameters
suitably. Apriori A may not have rank m. But we can make some cosmetic changes like pick the r rows
that are linearly independent and then append m− r rows of the basis vectors to A and it’s not difficult to
see that we still maintain the properties of Lemma 3.3. We’ll work with this modified matrix and in an
abuse of notation still refer to it as A.

Consider the subspace V given by the rowspan of A. The key point here is that the linear independent
condition on the rows of A translates into:

any element of Zn ∩ V⊥ has at least s nonzero entries.
In particular this means that we can bound the length of the shortest vector in the sub-lattice as λ1(Zn ∩

V⊥) >
√

s. Using Lemma 1.2 on K1 = Vor(Zn ∩ V⊥), then

vol(∂K1)
vol(K1)

≲ n/
√

s = n1/2+o(1).

We need to somehow lift this construction to the entire space. So we need to handle the part of Zn

projected onto V , with we denote as projV (Zn). Now, since the rows of A have length ∼ √n/m, it follows
that projV (Zn) ∼

√
m/nZm. On Zm we can get a convex body with corresponding Q2. Scaling this convex

body appropriately in projV (Zn), we can get a convex body K2 such that

vol(∂K2)
vol(K2)

∼
√

n/mQ(m) ∼ n1/2+o(1).

Consequently, if we take K = K1 × K2 to tile Zn, we can apply Lemma 3.2 to combine the above estimates
and get

vol(∂K)
vol(K)

=
vol(∂K1)
vol(K1)

+
vol(∂K2)
vol(K2)

≲ n1/2+o(1).

□
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