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1 Introduction
Let K ⊂ Rn be a convex body (i.e. convex setwith non-empty interior). A family of translates of K is called
covering if their union is Rn. This talk is about lattice coveringswhich is when these translation vectors are
vectors of a lattice L ⊂ Rn. Vaguely, the goal is to bound the smallest density of a lattice covering which
can be imprecisely thought of as “the best choice of a lattice L to minimize the sum of volumes of the
translates of K divided by the volume of Rn”.

More precisely, for a convex body K ⊂ Rn and a lattice L ⊂ Rn define the covering density of K with
respect to L to be

ΘK(L) :=
inf{Vol(rK) : rK + L = Rn}

|det(L)|
.

In other words, we want the smallest possible r such that placing a dilate of K by a factor of r at each
lattice point would cover all of space.
Remark 1.1. In the covering literature, there is also the notion of covering radius. This current notion
of ΘK(L) in some sense capture more fine grained notions of the covering problem since volume scales
rapidly with the dimension n of the problem.
Definition 1.2. The lattice covering density of a convex body K ⊂ Rn is

ΘK = inf
L
{ΘK(L) : L ⊂ Rn lattice}.

This quantifies the notion of finding a lattice L for which the overlaps of translates K does not take up
too much space.
Example 1.3. A (silly) example is to consider K to be the n-dimensional unit cube. Then taking L = Zn we get
ΘK(L) = ΘK = 1.

1.1 Earlier results
One of the most important works in this direction is due to Rogers [4, 5].
Theorem 1.4. When K = B(0, 1) is the n-dimensional Euclidean ball, there exist (absolute) constants c1, c2 such
that

c1n ≤ ΘK ≤ c2n(log n)1/2 log2(2πe).

The symmetry of the Euclidean ball is very critical in the proof of this theorem. Gritzmann [2] proved
a similar looking bound for a larger class of convex bodies.
Theorem 1.5. For every convex body K in Rn with an affine image symmetric about at least log log n+4 coordinate
hyperplanes, there exists an absolute constant c4 such that

ΘK ≤ c4n(log n)1+log2 e.

Up until [3], the best upper bound for general, not necessarily symmetric, convex bodies K is the
following bound due to Rogers.
Theorem 1.6. For K ⊂ Rn there exists (absolute) constant c5 such that

ΘK ≤ nlog log n+c5 .
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1.2 New results in [3]
The first theorem that we will discuss gives a polynomial upper bound for the lattice covering density of
general convex bodies K.
Theorem 1.7 ([3, Theorem 1.1]). For K ⊂ Rn there exists (absolute) constant c such that

ΘK ≤ cn2.

The next questionwemay ask is what about the covering density of K with respect to a random lattice
L? To formalize this question we need to introduce a probability measure on the space of lattices. We can
identify the space Ln of all lattice of covolume 1 with S Ln(R)/S Ln(Z). Let µn be the unique Haar measure
on Ln that is S Ln(R)-invariant. We ask: what is the µn-typical behavior of ΘK(L)?

There is some subtlety in asking this question. It turns out that EµnΘK(L) = ∞. The following theorem
by Strömbergsson [7] hints at the right kind of question that we should ask.
Theorem 1.8. Let µn be defined as above. For any δ > 0.77, as n→ ∞, we have that

µn({L : ΘK(L) ≥ (1 + δ)n})→ 0.

In this direction, the following was proven in [3].
Theorem 1.9 ([3, Theorem 1.2]). There are (absolute constants) c1, c2 > 0 such that for any n and for all
M ∈ [n2, n3],

sup
K:n−dim convex body

µn{L : ΘK(L) > M} < c1e−c2 M/n2
.

Intuitively what this result says is that one way to construct an optimal lattice packing is to sample a
random lattice.

2 Overview of tools

2.1 Rogers-Schmidt bounds
We need the following theorem due to Schmidt (essentially Theorem 4 of [6]). We use the following
notation. For a lattice L ⊂ Rn, define the torus TL = R

n/L. Let mL be the normalized Lebesgue measure
on TL. Let πL : Rn → TL be the projection map. Given a measurable set J ⊂ Rn, we are interested in
the proportion of the torus TL that is missed by the projection πL(J) of J onto the torus. Write E(J, L) =
1 − mL(πL(J)).
Theorem 2.1. J ⊂ Rn be a measurable set. There exists constants c1, c2 > 0 such that if V = vol(J) ≤ c1n then for
all κ > 0,

µn({L : E(J, L) > κe−V }) ≤
1
κ
+

c2

κ
eV−c1n.

Heuristically, suppose L = Zn and think of every point on the torus TL as an independent event for if
it is hit by the projection map πL. Then the expected number of points hit is approximately e−vol(J). The
theorem can then be thought of as deviation inequalities for random lattices. The key technical tool used
to prove this kind of theorems in the geometry of numbers is a suitable generalization of Siegel’s integral
formula.
Theorem 2.2 (Siegel’s integral formula). For compactly supported, bounded and measurable f : Rn → R, we
have ∫

Ln

∑
x∈L\{0}

f (x)dµn(L) =
∫
Rn

f (x)dx.
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As a sidebar for how these kinds of integral formula are used, if we set f to be the characteristic
function of a set S ⊂ Rn, then the sum counts |S ∩ L \ {0}| and so we recover a version of Minkowski’s
theorem that a random lattice sampled according to µn has on average vol(S ) nonzero vectors contained
in it. It is conceivable that we would then need a higher moment version of this theorem for the lattice
counting function ∑

x∈L\{0} f (x).
Theorem 2.3 (Rogers’ integral formula). For k < n, let f : (Rn)k → R be compactly supported, bounded and
measurable ∫

Ln

∑
x1,...,xk∈L
independent

f (x1, . . . , xk)dµn(L) =
∫
Rn
· · ·

∫
Rn

f (x1, . . . , xk)dx1 . . . dxk.

We do not go into further detail about how to prove these formulas, and refer the interested reader
to [5]. Instead, we record the following useful corollary of Theorem 2.1 via Markov’s inequality.
Corollary 2.4. Suppose J is a measurable set such that vol(J) = 2, then for any M > 0,

µn({L : E(J, L) ≥ M}) ≤ M−1e−2 + O(e−n).

2.2 Rank 2 Kakeya
Definition 2.5. We say that K ⊂ Fn

p is an ε-Kakeya set of rank r if

{S ∈ Grn,r(Fp) such that ∃x with x + S ⊂ K} ≥ ε|Grn,r(Fp)|.

When ε = 1 and r = 1 we recover the familiar notion of a discrete Kakeya set that contains a translated
line in every direction. It turns out that the rank that we care about is r = 2. We will need the following
result.
Theorem 2.6. If K ⊂ Fn

p is a ε-Kakeya set of rank 2 then

|K| ≥ εe−2n/p pn.

At this stage, it is unclear why we care about this notion of ε-Kakeya set of rank 2. We will see its
relevance in the next section. We defer the proof of this theorem to the last section. The proof is based
on the method of multiplicities, which was the method used to obtain the bound of qn/(2 − 1/q)n in the
(rank 1) Kakeya problem. In some sense, the proof of this theorem is fairly standard, and the new idea
of the paper is in how this theorem is applied to the problem of lattice coverings.

3 Proof sketches of Theorem 1.7 and Theorem 1.9
WLOG by dilating we assume that Vol(K) = 2.

3.1 Theorem 1.7
3.1.1 Step I

First, we cover most of space using Corollary 2.4 which gives us a lattice L1 ∈ Ln with “small” holes, that
is, such that mL1 (πL1 (K)) = 1 − e−2/2 > 1/2 where mL1 is the normalized Lebesgue measure.

3.1.2 Step II

By passing to a fundamental region of L1, we can discretize the set-up by considering a finer grid than L1.
In what follows think of p as a prime on the order of n (chosen by Bertrand’s postulate, say). Consider
L2 =

1
p · L1 obtained by dilating L1 by a factor of p in all directions: πL1 (L2) ⊂ TL1 is a dense p × p × · · · × p

grid. We make the identification πL1 (L2) ≃ Fn
p.
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3.1.3 Step III

Wenowwork strictly in the fundamental region of L1. Wewant to find an intermediate lattice L1 ⊂ L ⊂ L2
such that putting copies of K at L covers the lattice L2. Precisely, we want πL1 (L + K) ⊃ πL1 (L2).

Recall we identified πL1 (L2) with Fn
p, and so L = π−1

L1
(S ) for a subspace S ⊂ Fn

p. Then the covolume of L
is given by

[L : L1]−1 = p− dim S .

Now, we make the observation that if a convex body covers half the space then dilating it by a factor
of 2 covers all of space.
Observation 3.1. Let K be an n-dimensional convex body and L ⊂ Rn be a lattice. Suppose that

mL(πL(K)) >
1
2
.

Then L + 2K = Rn.

Proof. Since mL(πL(K)),ML(πL(−K)) > 1
2 , for any x ∈ TL it follows that there exists z1, z2 ∈ πL(K) such that

z1 − x = z2. Lifting z1, z2 ∈ πL(K) into y1, y2 ∈ K we have that x = πL(y1 + y2). Since this holds for any x ∈ TL

we obtain the desired conclusion. □

Applying to 1
p · K and combining with Step I, we see that L2 +

2
p · K = R

n. Since L2 ⊂ L + K, it follows
that Rn = L + (1 + ρ)K. For this lattice L, we have that

ΘK(L) ≤
vol((1 + 2/p) · K)

covol(L)
≈ pdim S .

So we really want to find an L with the property that πL1 (L + K) ⊃ πL1 (L2) but also minimizing the
dimension of the corresponding subset S . We will find S such that dim S = 2 via the rank 2 Kakeya
bound. Note that this recovers the quadratic bound in Theorem 1.7.

Let Fn
p∩πL1 (K) = K̃. We can rewrite our desired property as wanting to find S such that (x+S )∩ K̃ , ∅

for all x ∈ Fn
p. Let K̃c = Fn

p − K̃. Then the aforementioned can be written as K̃c not containing a copy of a
translate of S , that is K̃c is not a 1-Kakeya set of rank 2! Theorem 2.6 gives a lower bound on the size of a
Kakeya set, so if K̃ is large enough then its complement cannot be a discrete Kakeya set.

By Step 1, we have that |K̃| ≥ (1 − e−2/2) · pn so that |K̃c| < e−2 pn and applying Theorem 2.6 shows that
K̃c is not a Kakeya set. So there exists S ∈ Grn,2(Fp) with the desired properties, and we are done.
Remark 3.2. There is a subtle point here, which is that it only makes sense to apply Observation 3.1.3
to very small bodies because we are increasing the volume significantly by a factor of 2n; when we dis-
cretized the problem we shrank K to work with 1

p · K and hence obtained a small enough body to apply
Observation 3.1.3.

3.2 Theorem 1.9
In this section, we note the modifications that we need to make to the proof of Theorem 1.7 to obtain this
probabilistic version of the theorem.

Recall that we had a 3 step process: first we picked some lattice L1 such that using L1 we could cover
a large fraction of space after translating K. Next, we thickened L1 to obtain L2 =

1
p · L1 and made the

identification L2/L1 ≃ F
n
p. Then, we chose some subspace S ∈ Grn,2(Fp) and the final output was the

“thickening” L = L1 + S . For Theorem 1.9 we are sampling according to µn so we need to show that our
current sampling procedure still gives a lattice chosen according to µn.
Lemma 3.3 (White lie version of [3, Proposition 2.1]). The output of the following algorithm produces a
random lattice (after rescaling appropriately) chosen according to µn. Let p be any fixed prime in the interval
[n, 2n).
Sampling procedure
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(1) Sample L′ according to µn.

(2) Sample S ∈ Grn,2(Fp) uniformly at random.

(3) Output L = 1
p · L

′ + S .

Note that Corollary 2.4 tells us that most choices of L′ in step (1) of the sampling procedure above
would produce a lattice such that L′ + K covers a large proportion of Rn. However, in the proof of Theo-
rem 1.7 we only used the fact that we could find one possible subspace S such that K̃ + S = Fn

p, while we
need

|{S ∈ Grn,2(Fn
p) : ∀x ∈ Fn

p, (x + S ) ∩ K̃ , ∅}|

|Grn,2(Fn
p)|

to be suitably large so that when we sample S uniformly in step (2) we output a lattice L at the end of
the algorithm with high probability.

Equivalently, wewant the complement K̃c to miss many possible planes. Now if K̃c is not an ε-Kakeya
set of rank 2 we would be done, and this is exactly the kind of conclusion we can obtain via Theorem 2.6.

4 Proof of rank 2 Kakeya
In this section, we prove the following lower bound on ε-Kakeya set of rank 2 that we need.
Theorem 4.1. If K ⊂ Fn

p is a ε-Kakeya set of rank 2 then

|K| ≥ εe−2n/p pn.

We begin by proving the following, which uses the same kind of polynomial method as in [1].
Theorem 4.2. Let ε ∈ (0, 1]. If K ⊂ Fn

p is an ε-Kakeya set of rank 2 then

|K| ≥
(
1 +

(p − 1)
p2ε

)−n

pn.

Note that the bound deteriorates for small ε. We will boost the bound to get the desired linear de-
pendence on ϵ in Theorem 2.6 via a probabilistic sampling argument.

4.1 Probabilistic boosting
Lemma 4.3. Let 0 < ε < δ < 1. Assume K ⊂ Fn

p is an ε-Kakeya set of rank 2, then there exists a δ-Kakeya set
A ⊂ Fn

p of rank 2 of size

|A| ≤
⌊
log(1 − δ)
log(1 − ε)

⌋
|K|.

Proof. For the given K, consider the associated subset W of Gr(n, 2) of planes such that K contains some
translate of it. Let N = log(1−δ)

log(1−ε) and choose g1, . . . , gN from GLn(Fp) independently and uniformly at ran-
dom. It suffices to prove that ∣∣∣∣∣∣∣⋃i

giW

∣∣∣∣∣∣∣ ≥ δ|Gn,2(Fp)|.

Now, for some U ∈ W we have that the probability U < giW is given by 1 − |B|/|Gn,2(Fp)| ≤ 1 − ε and so

P

U < N⋃
i=1

giW

 ≤ (1 − ε)N ≤ 1 − δ.

The desired conclusion follows from linearity of expectation. □
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In particular, an immediate consequence of this lemma is that if K is an ε-Kakeya set of rank 2 then
for any 0 < ε < δ < 1, we have that

|K| ≥
(⌈

log(1 − δ)
log(1 − ε)

⌉)−1

·
(
1 + (p − 1)/(p2ε)

)−n
· pn.

Taking δ = 1/2 so that
⌈

log(1−δ)
log(1−ε)

⌉
≤ 1/ε, we recover the bound

|K| ≥ ε(1 + 2(q − 1)q−2)−nqn ≥ εpne−2n/p.

4.2 Polynomial method
The scheme of the proof is as follows:

• Find a low degree non-zero polynomial that vanishes “with high multiplicity” on the ε-Kakeya set
of rank 2, where the degree of the polynomial grows in the size of the Kakeya set.

• Show that the homogenous polynomial vanishes with high probability on a large subset of Fn
p.

• Using a multiplicity version of the Schwartz-Zippel lemma that the homogeneous part of the poly-
nomial was be identically zero if the Kakeya set is too small.

Now we introduce the Hasse derivative which can be thought of as a formal derivative in the finite
field setting that has properties which parallels the usual notion of derivative in polynomial rings over
general fields. This notion of the Hasse derivative will allow us to introduce a notion of multiplicity that
is similar to the usual notion of a polynomial vanishing to a given order.

Some notation: for a multi-index α ∈ Nn
0 write |α| = α1 + α2 + · · · + αn. Let Xα denote xα1

1 . . . x
αn
n . For a

polynomial P, let PH denote the homogeneous part of P with the highest total degree.
Definition 4.4. For P ∈ Fp[X], the α-Hasse derivative of P, denoted P(α), is the polynomial which is the
coefficient Yα in the expansion of P(X + Y), i.e.

P(X + Y) =
∑
α

P(α)(X)Yα.

Definition 4.5. The multiplicity of P at a point X, denoted mult(P, X), is the largest integer i such that
P(α)(X) = 0 for all αwith |α| < i.

The following lemma summarizes the properties of the Hasse derivative that we need.
Lemma 4.6. • If X ∈ Fn

p is such that mult(P, X) = m, then mult(P(α), X) ≥ m − |α|.

• (Behavior of multiplicity under composition) For any X ∈ Fn
p and polynomial P,Q, we have that

mult(P ◦ Q, X) ≥ mult(P,Q(X)).

We will also need the following multiplicity-version of the Schwartz-Zippel lemma.
Lemma 4.7. Let P ∈ Fp[X] be a non-zero polynomial of degree at most d. Then for any finite S ⊂ Fp, we have∑

X∈Fn
p

mult(P, X) ≤ d|S |n−1.

The following lemma expresses the polynomial technique.

Lemma 4.8. Given a set K ⊂ Fn
p and non-negative integers m, d such that

(
m+n−1

n

)
|S | ≤

(
n+d

d

)
, then there exists a

non-zero polynomial P ∈ Fp[X] of total degree at most d such that mult(P, X) ≥ m for all X ∈ K.
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With these tools in hand, we can now implement the scheme of the proof as mentioned at the begin-
ning of this section.
Proof. For parameters, let d = cq3 − 1 and m = (q2 + (q − 1)/ε)c for sufficiently large c. We will show that
|K| ≥

(
n+d

d

)
/
(

m+n−1
n

)
. For our choices of d and m, we have that

(
n+d

d

)
/
(

m+n−1
n

)
→ (1+(p−1)p−2ε−1)−n pn as c→ ∞.

Let ℓ = (qm−d)/(q−1). Not also for this choice of parameters we have that k < εp2ℓ. We will construct
a polynomial P of degree k such that PH vanishes to degree ℓ on a large subset of F2

p which vaguely
corresponds to the planes lying in the δ-Kakeya set.

1. Fix α ∈ Nn
0 such that |α| = w < ℓ. By Lemma 4.8, we can find a polynomial P that vanishes to

multiplicity at least m at each point of P. Write Q = P(α).
2. We can think of set of planes which contain a translation lying in K as a subset of F2

p; let U ⊂ F2
p be

the set of pairs (x, y) such that there exists a ∈ Fn
p such that a + xt1 + yt2 ∈ K for all t1, t2 ∈ Fp. Note

that |U | ≥ δp2. Step 1 means for (x, y) ∈ U there exists a such that
mult(P, a + t1x + t2y) ≥ m

for all t1, t2 ∈ Fp which by the behavior of multiplicity under composition implies that if we think
of Q(a + T1x + T2y) ∈ Fp[T1,T2] then

mult(Q(a + T1x + T2y), (t1, t2)) ≥ mult(Q, a + t1x + t2y) ≥ m − w.

But deg Q(a + T1x + T2y) ≤ deg Q ≤ k − w ≤ q(m − w) by definition of w < ℓ. So an application of the
Schwartz-Zippel lemma we stated above implies that Q(a + T1x + T2y) is the zero polynomial and
so QH(T1x + T2y) ≡ 0 as well. This means that for all (x, y) ∈ D we have that P(α)

H (T1x + T2y) ≡ 0.
3. Now, consider P(α)

H as a polynomial in n variables over Fp(T1,T2). Then we have shown that it van-
ishes at Ũ = {xT1+yT2 : (x, y) ∈ U}. But now allowing α to vary it follows that we have shown this for
all |α| < ℓ, so that P vanishes to multiplicity at least ℓ at all points of Ũ. Since |Ũ | ≥ δp2n, it follows by
applying Schwartz-Zippel again that P has to be the zero polynomial since deg P ≤ k < δp2ℓ, which
is a contradiction.

□
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