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In the first part, we develop a proper theory of Itô’s integration i.e. how do we make sense of

(H ·X)t“ = ” lim
ε→0

Hkε(X(k+1)ε −Xkε)

by exploiting the orthogonality of martingale increments in X to get cancellation, even if X itself has rather

rough sample paths.

1 “Normal” integrals

Definition 1.1 (Finite variation). Let a : [0,∞) → R be a cadlag function. For any n ∈ N and t ≥ 0, let

vn(t) =

⌈2nt⌉−1∑
k=0

|a((k + 1)2−n)− a(k2−n)|.

Then v(t) := limn→∞ vn(t) exists for all t and is the total variation of a on (0, t].

Claim 1.2. A cadlag function a : [0,∞) → R can be written as a difference of two right-continuous, non-

decreasing functions if and only if a is of finite variation.

Proof. Let a+ = 1
2 (v + a) and a− = 1

2 (v − a) and then note that

a+(t)− a+(s) = lim
n→∞

1

2

[ 2nt−n −1∑
k=2ns+n

(|a((k + 1)2−n)− a(k2−n)|+ (a((k + 1)2−n)− a(k2−n)))

+ |a(t+n )− a(t−n )|+ (a(t+n )− a(t−n ))

]
.

Claim 1.3. Let A be a cadlag, adapted process of finite variation V . Then V is cadlag, adapted and pathwise

non-decreasing.

To see V is adapted, note that Vt is the limit of Ft-measurable RVs:

Vt = lim
n→∞

2nt−n −1∑
k=0

|A(k+1)2−n −Ak2−n |+ |∆At|.

Definition 1.4. The previsibile σ-algebra P on Ω × (0,∞) is the σ-algebra generated by sets of the form

E × (s, t] for E ∈ Fs and s < t. Then we say H : Ω× (0,∞) is previsible if it is measurable w.r.t. P.
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Claim 1.5. Let X be a cadlag adapted process, and define for all t the process Ht := Xt− . Then H is

previsible.

Whsn is a process previsible?

Claim 1.6. A process H is previsible, then Ht is previsible with respect to Ft−

First use monotone class theorem to establish that the vector space

V = {H : Ω× [0,∞) → R s.t. Ht is Ft-measurable ∀t ≥ 0}

contains all measurable bounded functions. And then use standard approximation techniques: consider

Hn = ⌊2nH⌋
2n ∧ n.

Example 1.7. A Poisson process (Nt)t≥0 is not previsible since Nt is not Ft−-measurable.

Theorem 1.8. Let A : Ω × [0,∞) → R be a cadlag, adapted process of finite variation V . Let H be a

previsible process, and assume that for all ω ∈ Ω it holds that for all t > 0:∫
(0,t]

|H(ω, s)|dV (ω, s) < ∞.

Then (H ·A)(ω, t) :=
∫
(0,t]

H(ω, s)dA(ω, s) is cadlag, adapted and of finite variation.

Proof. • Well-definedness follows by writing H ·A = H+ ·A+ −H− ·A+ −H+ ·A− +H− ·A− and then

invoking the condition to conclude that each of these terms are finite.

• It’s not difficult to prove cadlag, also note that

∆(H ·A)t =

∫
Hs1(s = t)dAs = Ht∆At.

• We prove adaptedness by a monotone class argument

• Finite variation follows by the earlier characterization of writing it as a difference of non-decreasing

processes

2 Local Martingales

Definition 2.1. A filtration (Ft)t≥0 is said to satisfy usual conditions if:

• F0 contains all P-null sets,

• (Ft)t≥0 is right-continuous, that is for all t ≥ 0 it holds that Ft = Ft+ :=
⋂

s>t Fs.

Remark 2.2. For continuous X, we define FT := {E ∈ F : E ∩ {T ≤ t} ∈ Ft, ∀t ≥ 0}.

We can remember optional stopping theorem as effectively stating that the class of cadlag martingales is

stable under stopping.

Definition 2.3 (Local martingales). A cadlag adapted process is called a local martingale if there exists a

sequence (Tn)n≥1 of stopping times with Tn ↑ +∞ almost surely, such that the stopped process XTn is a

martingale for all n ≥ 1. In this case we say that (Tn)n≥1 reduces X.
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Remark 2.4. Consider Mt = |Bt|−1. We can easily check that E[Mt] → 0 as t → ∞, so it is not a martingale.

But we claim that Tn = inf{t ≥ 1 : |Bt| ≤ n−1} is a sequence of reducing times for Mt.

To show thatMt∧Tn
is a martingale, use the fact that |x|−1 is harmonic and f(Bt)−f(B0)− 1

2

∫ t

0
∆f(Bs)ds

is a martingale. There is a need to carve out the singularity at 0.

To prove that Tn ↑ ∞ it suffices to use annulus probabilities. That is, let Sr = inf{t ≥ 1 : |Bt| > R} and

then use E[MTn∧SR
] = E[M1] and write

P( lim
n→∞

Tn < ∞) ≤ P(∃R : Tn < SR for all n) = lim
R→∞

lim
n→∞

P[Tn < SR].

Claim 2.5. If X is a local martingale and Xt ≥ 0 for all t ≥ 0 then X is a supermartingale.

Proof.

E[Xt | Fs] = E[lim inf
n→∞

Xt∧Tn
| Fs] ≤ lim inf

n→∞
E[Xt∧Tn

| Fs] = lim inf
n→∞

Xs∧Tn
= Xs.

When is a local martingale an actual martingale?

Claim 2.6. TFAE:

• X is a martingale.

• X is a local martingale and for all t ≥ 0, the family

Xt = {XT : T is a stopping time with T ≤ t}

is UI.

Proof. (⇒) follows from OST which gives XT = E[Xt | FT ] and then using the fact that if X ∈ L1(Ω,F ,P)
then {E[X | G] : G ⊂ F is a sub-σ-algebra}. Consequently, Xt is UI.

(⇐) It suffices to show that for all bounded stopping times T we have E[XT ] = E[X0]. To show this we

use the UI martingale convergence theorem on

E[X0] = E[XTn
0 ] = E[XTn

T ] = E[XT∧Tn ].

Corollary 2.7. A bounded local martingale is a (true) martingale.

Theorem 2.8. If X is a continuous local martingale with X0 = 0 and X has finite variation then X ≡ 0

almost surely.

Proof. Define Tn = inf{t ≥ 0 : Vt = n}. Then the sequence (Tn)n≥1 reduces X, because |XTn
t | ≤ |Vt∧Tn

| ≤ n

and apply Corollary 2.7). Let Y = XTn . We compute

E[Y 2
t ] = E

[
N−1∑
k=0

(Ytk+1
− Ytk)

2

]

≤ E[ sup
0≤≤N

|Ytk+1
− Ytk | ·

N−1∑
k=0

|Ytk+1
− Ytk |] → 0,

where in the last step we used DCT and

lim
N→∞

sup
0≤k≤N

|Ytk+1
− Ytk | = 0.
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Remark 2.9. Continuity here is important! Counterexample otherwise: Let N ∼ Poi(1), and let Xt = Nt− t

for t ≥ 0, then X is of finite variation and X is a martingale.

The following depends on the notion of quadratic variation which is introduced in a later section.

Claim 2.10 (Example sheet 2). If M is a continuous local martingale with M0 = 0, then M is a L2-bounded

martingale iff E[[M ]∞] < ∞.

Proof. (⇐) follows by MCT + Doob’s. Let Tn be a reducing sequence. Then

E[sup
t

M2
t ] = lim

n
E
[
sup
t≤Tn

M2
t

]
= lim

n
E
[
sup
t
(MTn

t )2
]

≤ 4 lim
n

E[M2
Tn

] = 4 lim
n

E[[M ]Tn
] = 4E[[M ]∞] < ∞.

Remark 2.11 (Some other example sheet style problems). The same proof shows that if for all times t we

have E[[M ]t] < ∞ then it follows that Mt is a martingale. Consider an Itô process Y (to be defined...) with

Doobs-Meyer decomposition given by dYt = β(t)dt+σ(t)dXt where X is a martingale. Then [Y ] = σ2(t) · [X]

a.s. and so this shows for example that E
[∫ t

0
eαBsdBs

]
= 0 since

∫ t

0
eαBsdBs is a martingale.

Is there a “canonical” choice of reducing sequences?

Claim 2.12. Let X be a continuous local martingale with X0 = 0. For n ≥ 1, define the stopping times

Tn = inf{t ≥ 0 : |Xt| = n}.

Proof. • (Tn are stopping times)

{Tn ≤ t} =

{
sup

s∈[0,t]

|Xs| ≥ n

}
=
⋂
k≥1

⋃
s≤t
s∈Q

{
|Xs| > n− 1

K

}
∈ Ft

• (Tn ↑ ∞) Continuity of X implies sups∈[0,t] |Xs(ω)| < ∞, so there exists finite n(ω, t) such that

n(ω, t) > sups∈[0,t] |Xs(ω)| which implies that Tn(ω) > t.

• (Tn reduces X) Let T ∗
n be a reducing sequence, then XTm∧T∗

n is a martingale so that XTn is a local

martingale, but since it is bounded it is a true martingale.

3 Itô integrals

Let S denote the set of simple processes

H(ω, t) =

n−1∑
k=0

Zk(ω)1(tk,tk+1](t)

for some n ∈ N, and 0 = t0 < t1 < · · · < tn < ∞ and Zk is a bounded Ftk -measurable random variable.

Also define:

• M2 = {L2 bounded, cadlag martingales}

• M2
c = {L2 bounded, continuous martingales}

• M2
c,loc = {L2 bounded, continuous local martingales}
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3.1 H ∈ S, M ∈ M2

Claim 3.1. Define for H ∈ S and M ∈ M2,

(H ·M)t :=

n−1∑
k=0

Zk(Mtk+1∧t −Mtk∧t)

and then H ·M ∈ M2.

Proof. The L2 boundedness follows from independence of increments and also Doob’s maximal inequality.

Claim 3.2. Let H ∈ S and M ∈ M2. Then for any stopping time T , it holds that

H ·MT = (H ·M)T .

3.2 H ∈ L2(M),M ∈ M2
c

Now, we build towards Itô isometry to extend the definition of the stochastic integral from S. But first

we need to introduce Hilbert space structures to the integrators and integrand.

To equip the integrators M2
c with a Hilbert space structure, for X a cadlag adapted process, define the

norm

|||X||| = ∥sup
t≥0

|Xt|∥L2

and let C2 = {cadlag adapted processes X with |||X||| < ∞}. On M2, we also define ∥X∥ := ∥X∞∥L2 . The

point is that M2
c = Mc ∩M2 is a closed subspace.

Another way to think about Doob’s maximal inequality is that ∥·∥ and |||·||| are equivalent norms. Here’s

an example calculation to show that if (Xn) is a sequence in M2 such that |||Xn −X||| → 0 then X is a

martingale:

∥E[Xt | Fs]−Xs∥L2 ≤ ∥E[Xt −Xn
t | Fs] +Xn

s −Xs∥L2

≤ ∥E[Xt −Xn
t | Fs]∥L2 + ∥Xn

s −Xs∥L2

≤ ∥Xt −Xn
t ∥L2 + ∥Xn

s −Xs∥L2

≤ 2|||Xn −X||| → 0.

Next we equip the integrands with a Hilbert space structure.

Definition 3.3 (UCP convergence). Let (Xn) be a sequence of processes, then we say that Xn → X

uniformly on compact in probability if for every ε, t > 0 we have

P[sup
s≤t

|Xn
s −Xs| > ε] → 0.

Theorem 3.4 (Quadratic variation). Let M be a continuous local martingale. Then there exists a unique

(up to indistinguishability) continuous, adapted and non-decreasing process [M ] such that [M ]0 = 0 and

M2 − [M ] is a continuous, local martingale. Moreover, if we define

[M ]nt =

⌈2nt⌉−1∑
k=0

(M(k+1)2−n −Mk2−n)2

then [M ]n → [M ] ucp as n → ∞.
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Remark 3.5. The intuition here is that if X has finite variation then if we chop up the interval [0, T ] into

T/δt intervals of size δt then on each such smaller interval (kδt, (k + 1)δt) we increase X on the order ∼ δt,

and then adding T/δt of some ∼ δt gives O(1).

For quadratic variation, the intuition is to think about Brownian motion, where E|Bt+δt − Bt| =√
δt|N(0, 1)|, so in particular if X has finite quadratic variation we should think that on the smaller in-

terval (kδt, (k + 1)δt), X increases on the order ∼
√
δt so that if we add T/δt of square of increment then

we get O(1).

Proof. • (Uniqueness) This follows from the fact that the only continuous local martingales wiht bounded

variation is a.s. 0.

• (Existence M ∈ M2
c) The strategy is to guess what M2 − [M ] should look like. Start with compact

time sets [0, T ], where T is deterministic and finite. We can try to approximate MT dyadically by

Hn
t =

⌈2nT⌉−1∑
k=0

Mk2−n1(k2−n,(k+1)2−n](t)

then dyadically we would build the martingale to look like

Xn
t = (Hn ·M)t =

⌈2nT⌉−1∑
k=0

Mk2−n(M(k+1)2−n∧t −Mk2−n∧t).

Indeed, we can check that M2
k2−n − 2Xn

k2−n =
∑k−1

j=0 (M(j+1)2−n −Mj2−n)2 = [M ]nk2−n .

The first step is to show that (Xn) is bounded in ∥·∥. The only tool we have at our disposal is

Cauchy-Schwarz to “isolate processes”, so we just follow our nose, writing H = Hn −Hm:

∥Xn −Xm∥2 = E[(H ·M)2T ]

= E

⌈2nT⌉−1∑
k=0

H2
k2−n(M(k+1)2−n −Mk2−n)2


≤ E

 sup
t∈[0,T ]

|Ht|2
⌈2nT⌉−1∑

k=0

(M(k+1)2−n −Mk2−n)2


≤

C.S. E

( sup
t∈[0,T ]

|Ht|2
)2
1/2

E


⌈2nT⌉−1∑

k=0

(M(k+1)2−n −Mk2−n)2

2

2

≲ ∥M∥CL∞

for some constant C > 0.

Finally we should check that [M ]n → [M ] ucp. So we first now that

sup
0≤t≤T

|Xn
t − Yt| → 0

in probability. It suffices to combine this with uniform continuity of M2 and Y on [0, T + 1]:

sup
0≤t≤T

|[M ]t − [M ]nt | ≤ sup
0≤t≤T

|M2
2−n⌈2nt⌉ −M2

t |+ 2 sup
0≤t≤T

|Xn
2−n⌈2nt⌉ − Y2−n⌈2nt⌉|+ 2 sup

0≤t≤T
|Y2−n⌈2nt⌉ − Yt|.
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• (Existence M ∈ Mc,loc) This is a localization argument. Define Tn = inf{t ≥ 0 : |Mt| ≥ n}. Then

apply the previous step to get a unique continuous adapted and non-decreasing process [MTn ] on

[0,∞) so that [MTn ]0 = 0 and (MTn)2 − [MTn ] ∈ Mc,loc. Uniqueness allows us to “stitch” everything

together.

It remains to be seen that [M ]n → [M ] ucp as n → ∞, which follows by considering that when

{Tk > T} then we can just use the previous step, and Tk ↑ ∞:

P

[
sup

t∈[0,T ]

|[M ]nt − [M ]t| > ε

]
≤ P[Tk ≤ T ] + P

[
sup

t∈[0,T ]

|[MTk ]nt − [MTk ]t| > ε

]
→ 0.

Example 3.6. For the standard Brownian motion, we have [Bt] = t.

Corollary 3.7. If M ∈ M2
c then M2 − [M ] is a UI martingale.

Proof. We just keep using the fact that if we can bound a local martingale above by something integrable

then we can conclude that we have a true martingale.

Let Sn = inf{t ≥ 0 : [M ]t ≥ n} for all n ≥ 1. Then Sn ↑ +∞ and Sn is a stopping time for all n, with

[M ]t∧Sn
≤ n.

By Doob’s we have that M2
t∧Sn

− [M ]t∧Sn
is dominated by something integrable. Then combine OST

and MCT (LHS)/DCT (RHS) to get:

E[[M ]t∧Sn
] = E[M2

t∧Sn
] =⇒ E[[M ]Sn

] = E[M2
Sn

].

Taking n → ∞ and then we get that [M ]∞ is integrable, and this is enough to show that |M2
t − [M ]t| is

dominated by an integrable random variable.

Now that we have the non-decreasing function [M ](ω), we can define a corresponding Lebesgue-Stieltjes

measure; indeed, we can define µ on P the previsible σ-algebra by:

µ(E × (s, t]) = E[1(E)([M ]t − [M ]s)].

(and noting that E × (s, t] is a π-system that generates P)

Then we define L2(M) := L2(Ω× (0,∞),P, µ) and write

∥H∥L2(M) = ∥H∥M :=

[
E
(∫ ∞

0

H2
sd[M ]s

)]1/2
.

So far we have all the definitions in place to state Itô’s isometry which allows us to extend our work

in the earlier section. To spell it out, we first discuss the stochastic integral that we built by hand for

H ∈ S ⊂ L2(M). We claim that for any M ∈ M2
c , the map H 7→ H · M provides an isometry between

(L2(M), ∥·∥M ) and (M2
c , ∥·∥) when restricted to S ⊂ L2(M). Indeed, using the fact that M2 − [M ] is a

7



martingale

∥H ·M∥2 = ∥(H ·M)∞∥2L2

=

n−1∑
k=0

E[Z2
k(Mtk+1

−Mtk)
2]

=

n−1∑
k=0

E[Z2
kE[M2

tk+1
−M2

tk
| Ftk ]]

=

n−1∑
k=0

E[Z2
kE[[M ]tk+1

− [M ]tk | Ftk ]]

=

n−1∑
k=0

E[Z2
k([M ]tk+1

− [M ]tk)]

= E
[∫ ∞

0

H2
sd[M ]s

]
= ∥H∥2M .

We can extend this to the entire of L2(M).

Theorem 3.8 (Itô’s isometry). There exists a unique isometry I : L2(M) → M2
c such that I(H) = H ·M

for all H ∈ S.

This is to be expected since S contains indicator functions of all previsible processes P, and so S is dense

in L2(P, µ) for any choice of finite measure µ on P.

Proof. Extending I to the whole of L2(M) follows because I(·) is linear for simple processes. To show there

is isometry, use ∥∥x∥ − ∥y∥∥ ≤ ∥x− y∥ and get

∥H ·M∥ = lim
n→∞

∥Hn ·M∥ = lim
n→∞

∥Hn∥M = ∥H∥M .

3.3 H locally bounded, M ∈ Mc,loc

Claim 3.9. Let M ∈ M2
c and H ∈ L2(M) and let T be a stopping time, then

(H ·M)T = (H1(0, T ]) ·M = H · (MT ).

Proof. There are three stages:

1. First, fix H ∈ S and M ∈ M2
c , T taking finitely many values

2. Next, fix H ∈ S and M ∈ M2
c , T a general stopping time. then approximate T using Tn,m =

(2−n⌈2nT ⌉) ∧m.

3. Finally, H ∈ L2(M), M ∈ M2
c and T a general stopping time, and then approximate H by considering

a sequence (Hn)n≥1 in S such that Hn → H in L2(M).

Definition 3.10 (Locally bounded process). A previsible process H is locally bounded if there exists a

sequence (Sn)n≥1 of stopping times with Sn ↑ ∞ almost surely such that H1(0, Sn] is bounded for all n.
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Definition 3.11. Let H be a locally bounded previsible process such that H1(0, Sn] is bounded for all n,

for (Sn)n≥1 a sequence of stopping times with Sn ↑ ∞ a.s. and let M be a continuous local martingale iwth

reduce sequence (S′
n)n≥1 given by S′

n = inf{t ≥ 0 : |Mt| ≥ n} so that MS′
n ∈ M2

c for all n. Let Tn = Sn∧S′
n

for all n ≥ 1 and define

(H ·M)t := ((H1(0, Tn]) ·MTn)t

for t ≤ Tn.

We next show that this extension of the stochastic integral still continues to behave well under stopping.

Claim 3.12. Let M ∈ Mc,loc and let H be a locally bounded previsible process. Then H ·M ∈ Mc,loc and

(Tn)n≥1 as given in the previous defintion is a reducing sequence. Then for any stopping time T we have

(H ·M)T = (H1(0, T ]) ·M = H · (MT ).

Claim 3.13. Let M ∈ Mc,loc and let H be a locally bounded previsible process. Then

[H ·Itô M ] = H2·Lebesgue-Stieljtes [M ].

Proof. • Suppose H,M are uniformly bounded, then for all bounded stopping times T

E[(H ·M)2T ] = E[((H1(0, T ]) ·M)2∞]

Itô’s
= E[((H1(0, T ]) · [M ])∞]

= E[(H2 · [M ])T ]

so by the converse of the OST it follows that (H ·M)2 −H2 · [M ] is a continuous martingale, and by

uniqueness of quadratic variation process it follows that [H ·M ] = H2 · [M ].

• If H is only locally bounded then as always we employ a localization argument. Let (Tn) be a sequence

of stopping times such that H1(0, Tn],M
Tn are uniformly bounded, then using MCT we can write

[H ·M ] = lim
n→∞

[H ·M ]Tn

= lim
n→∞

[(H ·M)Tn ]

= lim
n→∞

[(H1(0, Tn]) ·MTn ]

= lim
n→∞

(H1(0, Tn])
2 · [MTn ]

= H2 · [M ].

Everything is in the same space, so we can iterate integrals.

Claim 3.14. Let M ∈ Mc,loc and let H,K be localy bounded previsible processes. Then

H · (K ·M) = (HK) ·M.

Proof. These are well-defined because

∥H∥L2(K·M) = ∥HK∥L2(M). (1)
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Let (Hn) and (Kn) be sequences of simple processes converging to H and K respectively, and then note

that

∥Hn · (Kn ·M)−H · (K ·M)∥ ≤ ∥(Hn −H) · (Kn ·M)∥+ ∥H · ((Kn −K) ·M)∥
Itô’s
= ∥Hn −H∥L2(Kn·M) + ∥H∥L2((Kn−K)·M)

(1)
= ∥(Hn −H)Kn∥L2(M) + ∥H(Kn −K)∥L2(M)

≤ ∥Hn −H∥L2(M)∥Kn∥L∞ + ∥H∥L∞∥Kn −K∥L2(M) → 0.

Now finish with a localization argument to handle the case where H,K are locally bounded.

3.4 H locally bounded, M semimartingale

Definition 3.15 (Doob-Meyer decomposition of semimartingales). A continuous adapted process X is a

semimartingale if it can be written in the form

X = X0 +M +A

where M is a continuous local martingale, A is a process of finite variation and M0 = A0 = 0.

Assuming that H is left-continuous, then we can obtain the integral as the limit of its Riemann sum

approximations.

Claim 3.16. Let X be a continuous semimartingale and H be a locally bounded left-continuous process which

is a dapted. Then
⌊2nt⌋−1∑

k=0

Hk2−n(X(k+1)2−n −Xk2−n) → (H ·X)t

ucp as n → ∞.

Proof. Let Hn
t = H2−n⌊2nt⌋ =

∑
k Hk2−n1[k2−n, (k + 1)2−n)(t). Check that

(Hn ·M)t =

⌊2nt⌋−1∑
k=0

Hk2−n(M(k+1)2−n −Mk2−n) +H2−n⌊2nt⌋(Mt −M2−n⌊2nt⌋)

and then use Itô’s isometry to check that ∥Hn ·M −H ·M∥2 → 0.

Remark 3.17. Itô integration effectively constructs a (local) martingale, and so we would not expect I(·) to
preserve positivity.

4 Stochastic calculus

Definition 4.1 (Polarization identity). For M,N ∈ Mc,loc, define the covariation to be

[M,N ] :=
1

4
([M +N ]− [M −N ]).

Theorem 4.2. Let M,N ∈ Mc,loc. Then the following hold:

(a) [M,N ] is the unique (up to indistinguishability) continuous, adapted, finite variation process such that

[M,N ]0 = 0 and MN − [M,N ] ∈ Mc,loc.
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(b) For n ≥ 1, define

[M,N ]nt :=

⌈2nt⌉−1∑
k=0

(M(k+1)2−n −Mk2−n)(N(k+1)2−n −Nk2−n).

Then [M,N ]nt → [M,N ]t ucp as n → ∞.

(c) If M,N ∈ M2
c, then MN − [M,N ] is a UI martingale.

(d) For H locally bounded and previsible, it holds

[H ·M,N ] + [M,H ·N ] = 2H · [M,N ].

Proof. For (d), expand (H + 1)2 · [M,N ] = [(H + 1) ·M, (H + 1) ·N ].

Theorem 4.3 (Kunita-Watanabe). Let M,N ∈ Mc,loc and H a locally bounded, previsible process. Then

[H ·M,N ] = H · [M,N ].

Proof. It suffices to show [H ·M,N ] = [M,H ·N ] and then invoke (d) from earlier. By uniqueness of quadratic

variation, it suffices to prove that (H ·M)N −M(H ·N) ∈ Mc,loc. By localization it suffices to restrict to

M,N ∈ M2
c andH bounded, and by OST it suffices to prove E[(H ·M)TNT ] = E[MT (H ·N)T ] for all bounded

stopping times T . But by some shimmy-ing once more it suffices to prove E[(H ·M)∞N∞] = E[M∞(H ·N)∞]

for all M,N ∈ M2
c and H bounded.

When H = Z1(s, t] where Z is bounded and Fs-measurable we can check that the above evaluates to

E[Z(MtNt −MsNs)]. Use linearity to extend to H ∈ S. Now approximate H by Hn → H in L2(M) and

L2(N) then we can show that (Hn ·M)∞N∞ converges in expectation to (H ·M)∞N∞ by Cauchy-Schwarz

or whatever.

Definition 4.4. For X,Y continuous semimartingales we define their covariation [X,Y ] to just be the

covariation of their respective martingale parts in the Doob-Meyer decomposition.

Claim 4.5. Let X,Y be independent continuous semimartingales. Then [X,Y ] = 0.

4.1 Itô’s formula

Claim 4.6. Let X and Y be continuous semimartingales. Then

XtYt −X0Y0 =

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X,Y ]t.

Proof. It basically following by dyadically summing the following identity: For s ≤ t, we have

XtYt −XsYs = Xs(Yt − Ys) + Ys(Xt −Xs) + (Xt −Xs, Yt − Ys).

Theorem 4.7 (Itô’s formula). Let X1, . . . , Xd be continuous semimartingales and let X = (X1, . . . , Xd).

Let f : Rd → R be C2. Then

f(Xt) = f(X0) +

d∑
i=1

∫ t

0

∂f

∂xi
(Xs)dXs +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
d[Xi, Xj ]s.
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Remark 4.8. A consequence of Itô’s is that if f is harmonic then f(Bt) ∈ Mc,loc; further if f is bounded

then f(Bt) is a (true) martingale.

Define the Stratonovich integral as∫ t

0

Xs∂Ys =

∫ t

0

XsdYs +
1

2
[X,Y ]t.

The Riemann sum approximations for the term on the RHS is midpoint rather than the left endpoint

⌊2nt⌋−1∑
k=0

(
X(k+1)2−n +Xk2−n

2

)
(Y(k+1)2−n − Yk2−n).

However, because the integrand is the midpoint, we end up with the fact that the Stratonovich integral is

no longer necessarily a local martingale. The perk is that the integration by parts formula is particularly

simple:

XtYt −X0Y0 =

∫ t

0

Xs∂Ys +

∫ t

0

Ys∂Xs.

The actual thing to remember is the following list of shorthand:

• (iterated integral) Htd(KtdXt) = (HtKt)dXt

• (Kunita-Watanabe) HtdXtdYt = d(HtdXt)dYt

• (IBP) d(XtYt) = XtdYt + YtdXt + dXtdYt

• (Itô’s) df(Xt) =
∑d

i=1
∂f
∂xi

(Xt)dX
i
t +

1
2

∑d
i,j=1

∂2f
∂xi∂xj

(Xt)dX
i
tdX

j
t .

5 Applications

Theorem 5.1 (Lévy’s characterization of BM). Let X1, . . . , Xd be continuous local martingales and set

X = (X1, . . . , Xd). Suppose that X0 = 0 and that [Xi, Xj ]t = δijt for all i, j and t ≥ 0. Then X is a

standard Brownian motion on Rd.

Proof. It suffices to show that for all θ ∈ Rd,

E[ei⟨θ,Xt−Xs⟩ | Fs] = exp

(
−1

2
|θ|2(t− s)

)
.

This is basically equivalent to proving that Zt = exp(i⟨θ,Xt⟩ + 1
2 |θ|

2t). We will show that Z ∈ Mc,loc and

this suffices since Z is bounded on [0, t] for each t ≥ 0.

By definition, Yt = ⟨θ,Xt⟩ has the property that

[Y ]t = |θ|2t.

Now, Zt = exp(iYt +
1
2 [Y ]t) and then we apply Itô’s with f(x, y) = exp(ix + y/2) to get that dZt =

iZtdYt − 1
2Zt · [Yt] +

1
2Zt · [Yt] = iZtdYt and then it follows that Zt ∈ Mc, as desired.

A consequence is that all continuous local martingales and martingales are time-changed Brownian mo-

tions.

Theorem 5.2 (Dubins-Schwarz). Let M ∈ Mc,loc with M0 = 0 and [M ]∞ = ∞. Set τs := inf{t ≥ 0 :

[M ]t > s}, Bs := Mτs and Gs := Fτs . Then τs is an (Ft)-stopping time and [M ]τs = s for all s ≥ 0.

Moreover, B is a (Gs)-Brownian motion and

MT = B[M ]t .
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One immediate point of contention is that [M ]t is potentially flat on some intervals. This seems to suggest

that there is no hope for Dubins-Schwarz to work because B[M ]t is plausibly discontinuous. This issue is

handled by the flatness lemma which states that M and [M ] are constant on the same intervals.

Lemma 5.3 (Flatness lemma). A.s. for all 0 ≤ a < b, for all t ∈ [a, b], we have that Mt = Ma iff

[M ]b = [M ]a.

Proof. Basically follows from martingale property of M2 − [M ] and M itself. Let Sq = inf{t > q : [M ]t >

[M ]q} and so M is constant on [q, Sq]. OST effectively says that E[M2
Sq

− M2
q | Fq] = [M ]Sq

− [M ]q.

Consequently, using orthogonality of martingale increments of M it follows that

E[(MSq
−Mq)

2 | Fq] = E[M2
Sq

−M2
q | Fq] = E[[M ]Sq

− [M ]q | Fq] = 0.

Proof of Theorem 5.2. • (τs is a stopping time, ...) [M ] is continuous and adapted. [M ]∞ = ∞ implies

that τS < ∞ for all s ≥ 0. Apply other known abstract nonsense from Advanced Probability if

necessary.

• (B is continuous) s 7→ τs is non-decreasing and cadlag. It suffices to show that Bs− = Bs for all s ≥ 0.

If τs = τs− we are done. Else, by localization M ∈ M2
c and then apply Lemma 5.3 to the interval

[τs− , τs] on which [M ] is flat.

• (B is BM) Since [Mτs ]∞ = [M ]τs = s, and consequently Mτs ∈ M2
c since E[[Mτs ]∞] < ∞. In

particular, we have that (M2 − [M ])τs is a UI martingale. This immediately shows that the OST that

B is a martingale with [B]t = t and then we can just apply the Lévy characterization.

Example 5.4 (Extension of an earlier remark). Let h ∈ L2([0,∞)) and let Mt :=
∫ t

0
h(s)dBs. Then M0 = 0,

M ∈ Mc,loc and [M ]t =
∫ t

0
h2(s)ds and then

M∞
(d)
= B∫ ∞

0
h2(s)ds ∼ N(0, ∥h∥2L2).

Corollary 5.5 (Dudley?). For any 0 ≤ a < b and any finite random variable X ∈ Fa, there is a finite

stopping time τ with a ≤ τ < b such that

X =

∫ τ

a

1

b− t
dBt.

Definition 5.6 (Exponential martingale). Let M ∈ Mc,loc with M0 = 0. Define the process E(M)t by

setting

E(M)t = exp(Mt − 1
2 [M ]t).

Then E(M) is the stochastic exponential of M . Note that E(M) ∈ Mc,loc and it satisfies dE(M)t =

E(M)tdMt.

Here E(M) ∈ Mc,loc because by Itô’s, we can write dZt = Zt(dMt − 1
2d[M ]t) +

1
2Ztd[M ]t = ZtdMt.

Theorem 5.7. Let M ∈ Mc,loc with M0 = 0. Suppose that [M ] is uniformly bounded, then E(M) is a UI

martingale.

If the quadratic variation of a continuous local martingale is small then the martingale cannot be too

large.
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Claim 5.8. Let M ∈ Mc,loc with M0 = 0. Then for all ε, δ > 0, we have that

P
[
sup
t≥0

Mt ≥ ε, [M ]∞ ≤ δ

]
≤ exp

(
− ε2

2δ

)
.

Proof. Fix ε > 0 and let T = inf{t ≥ 0 : Mt ≥ ε}. Fix θ > 0 and set Zt = exp
(
θMT

t − 1
2θ

2[M ]Tt
)
then

Zt ∈ Mc,loc since Z = E(θMT ) and θMT ∈ Mc,loc. Moreover, |Zt| ≤ eθε for all t ≥ 0 by construction so Z

is a bounded martingale. And consequently E[Z∞] = Z0 = 1. For each δ > 0, we have

P
[
sup
t≥0

Mt ≥ ε, [M ]∞ ≤ δ

]
= P

[
sup
t≥0

eθM
T
t ≥ eθε, [M ]∞ ≤ δ

]
≤ P

[
sup
t≥0

Zt ≥ eθε−θ2δ/2

]
≤ exp(−θε+ θ2δ/2).

where the last step is by Doob’s maximal inequality.

Proof of Theorem 5.7. It suffices to show that E(M) is uniformly bounded by an integrable random variable;

we use the bound supt≥0 E(M)t ≤ exp
(
supt≥0 Mt

)
, since [M ]t ≥ 0 for all t ≥ 0. Now use the previous lemma

to write

E
[
exp

(
sup
t≥0

Mt

)]
=

∫ ∞

0

P
[
exp

(
sup
t≥0

Mt

)
≥ λ

]
dλ

=

∫ ∞

0

P
[
sup
t≥0

Mt ≥ log λ

]
dλ

≤ 1 +

∫ ∞

1

exp

(
− (log λ)2

2c

)
dλ < ∞.

Next, we see that a change in measure is synonymous to a change in drift.

Theorem 5.9 (Girsanov’s). Let M ∈ Mc,loc be such that M0 = 0. Suppose that Z = E(M) is a UI

martingale. Then we can define a new probability measure P̃ ≪ P on (Ω,F) by setting P̃ = E[Z∞1(A)] fro

a ∈ F . If X ∈ Mc,loc(P) then X − [X,M ] ∈ Mc,loc(P̃).

Proof. Let Tn = inf{t ≥ 0 : |Xt − [X,M ]t| ≥ n}. It suffices to show that Y Tn := XTn − [XTn ,M ] ∈ Mc(P̃)
for all n. Now, the key property of the exponential martingale is that Itô’s gives dZt = ZtdMt, and so by

IBP we get

d(ZtYt) = YtdZt + ZtdYt + dYtdZt

= YtdZt + ZtdXt

which implies that ZTYT ∈ Mc,loc(P). To finish up it suffices to note that ZT is UI while Y is bounded.

Remark 5.10. The quadratic variation does not change under this change of measures from P to P̃.

As a consequence of the above remark and Lévy’s characterization of BM, it follows that we have the

following.

Corollary 5.11. Let B be a standard Brownian motion under P and let M ∈ Mc,loc with M0 = 0. Suppose

that Z = E(M) is a UI martingale and P̃(A) = E[Z∞1(A)] for A ∈ F . Then B̃ = B−[B,M ] is a P̃-Brownian
motion.
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In more concrete terms, we have the following variant of Girsanov’s.

Corollary 5.12 (Restatement of Girsanov’s in the Brownian setting). If Bt is a Brownian motion under a

measure P then by considering the measure Q with Radon-Nikodym derivative

dQ

dP
= exp

(∫ t

0

µsdBs −
1

2

∫ t

0

µ2
sds

)
,

and under this new measure Q,

B̃t = Bt −
∫ t

0

µsds.

is a Brownian motion.

Remark 5.13. As a concrete example, consider the following SDE with drift

dXt = µdt+ σdBt.

Then the change of measure given by

dQ

dP
= exp

(
−µ

σ
Bt −

1

2

(µ
σ

)2
t

)
removes the drift.

6 Stochastic differential equations

Let σ : Rd → M d×m(R) and b : Rd → Rd measurable, and consider

dXt = σ(Xt)dBt + b(Xt)dt.

A solution is given by:

• A filtered probability space (Ω,F , (Ft)t≥0,P) where (Ft)t≥0 satisfies the usual conditions.

• An (Ft)-Brownian motion in Rm,

• An (Ft)-adapted continuous process X in Rd such that

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds.

Definition 6.1. Let (Bt)t≥0 be a Brownian motion with admissible filtration (Ft)t≥0. Then we say that

(Xt,Ft) is a strong solution with initial condition x0 if

XT −X0 =

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds

and X0 = x0 holds a.s. for all t ≥ 0.

For strong solutions, we can define pathwise uniqueness which occurs if X and X ′ are solutions then

P[Xt = X ′
t ∀t ≥ 0] = 1 and fundamentally this is because we fixed the underlying probability space.
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Definition 6.2. (XT ,Ft) on some probability space (Ω,Ft,P) is a weak solution with initial distribution

µ if there exists a Brownian motion (Bt)t≥0 on (Ω,F ,P) such that (Ft)t≥0 is an admissible filtration,

P(X0 ∈ ·) = µ(·) and

Xt −X0 =

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds

holds a.s. for all t ≥ 0.

For weak solutions, we ask for uniqueness in law which is when all solutions to the SDE starting from

x0 have the same distribution.

Example 6.3. The SDE dXt = −sgn(Xt)dBt, X0 = 0 has a weak solution with unique law but no strong

solution with pathwise uniqueness.

Theorem 6.4. If σ and b are Lipschitz then there is pathwise uniqueness; for each probability space satsifying

the usual condition and each choice of Ft-Brownian motion B, there is a strong solution from any x ∈ Rd.

Here for σ we measure Lipschitzness in terms of the Frobenius norm.

Existence follows from contraction mapping, and uniquess follows from Gronwall’s:

Lemma 6.5 (Gronwall’s). Let T > 0 and let f be a non-negative, bounded, measurable function on [0, T ].

Suppose that there exists a, b ≥ 0 such that for all t ∈ [0, T ] we have

f(t) ≤ a+ b

∫ t

0

f(s)ds,

Then f(t) ≤ aebt.

The way to remember this lemma is that if f(t) satisfies a (differential or integral) inequality of a suitable

type, then this limits the growth of f(t) in such a way that f(t) can become at most as big as the function

f(t) which satisfies the corresponding equality. To solve for equality we use the ODE trick of an integrating

factor.

Proof. 1. (Pathwise uniqueness) Let τ = inf{t ≥ 0 : |Xt| ∨ |X ′
t| ≥ M} and then we can use Itô’s and C-S

to bound

E[(Xt∧τ −X ′
t∧τ )

2] ≤ 2E

[(∫ t∧τ

0

(σ(Xs)− σ(X ′
s))dBs

)2
]
+ 2E

[(∫ t∧τ

0

b(Xs)− b(X ′
s)

)2
]

≤ 2E
[∫ t∧τ

0

(σ(Xs)− σ(X ′
s))

2ds

]
+ 2TE

[∫ t∧τ

0

(b(Xs)− b(X ′
s))

2

]
≤ 2K2(1 + T )

∫ t

0

E[(Xs∧τ −Xs∧τ ; )
2]ds.

Then apply Gronwall’s to f(t) = E[(X ′
t∧τ)−Xt∧τ

)2].

2. (Existence of strong solution) We show that a solution can be given as the fixed point of a contraction

mapping

F (X)t = x+

∫ t

0

σ(Xs)dBS +

∫ t

0

b(Xs)ds.

We can apply Doob’s L2 inequality to bound (Mt) where Mt =
∫ t

0
σ(Xs)dBs because E([M ]T ) ≤

2T (|σ(0)|2 +K2|||X|||2T ) < ∞. Anyways, combining Doob’s and C-S easily show that∣∣∣∣∣∣∣∣∣F (n)(X)− F (n)(Y )
∣∣∣∣∣∣∣∣∣2

T
≤ Cn

TT
n

n!
|||X − Y |||2T .
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To show that this is FB
t adapted, it suffices to take Y 0 = x and let Y n = F (Y n−1). Here Y n is

evidently FB
t adapted, and by the earlier inequality we have that |||X − Y |||2T ≤ Cn

TTn

n! |||X − x|||2T , so
Y n → X in CT and so there exists a subsequence (Y nk)k≥1 such that Y nk → X uniformly on [0, T ].

Since X is the a.s. limit of FB
t random variables, it follows that it must be as well.

3. (Uniqueness in law) As we iterate, it is enough to note that Y n → X and Ỹ n → X̃ uniformly on

compact time intervals, and then we can use induction to prove that Y n ∼ Ỹ n.

Definition 6.6. A locally defined process (X, T ) where T is a stopping time and X : {(ω, t) ∈ Ω× [0,∞) :

t < T (ω)} → R.

Definition 6.7. We say that (X, T ) is a maximal local solution to an SDE if for any other local solution

(Y, η) on the same space such that Xt = Yt for all t < T ∧ η, we have that η ≤ T .

Definition 6.8. Let U ⊂ Rd be open. Then f : U → Rd is locally Lipschitz if for each compact set C ⊂ U ,

we have that f
∣∣
C

is Lipschitz.

Theorem 6.9. Let U ⊂ Rd be open and suppose σ : U → M d×m(R) and b : U → Rd are locally Lipschitz.

Then for all x ∈ U , the SDE dXt = σ(Xt)dBt+b(Xt)dt has a pathwise unique maximal local solution (X, T )

starting from x. Moreover, for all compact sets C ⊂ U , on the event {T < ∞}, we have that

sup{t < T : Xt ∈ C} < T.

Proof. The strategy of the proof is as follows:

1. Fix C ⊂ U and let T = inf{t ≥ 0: X̃t ∈ C}. There exists a globally Lipschitz function that agrees

with σ, b on C. Use our earlier work to show that there is a unique local solution in C.

2. To build a local solution on the whole space, approximate U by growing compact sets Cn and “glue”

the corresponding local solutions.

3. For maximality, suppose we have two maximal solutions (X, T ) and (Y, η). Then define Sn = inf{t ≤
η : Yt ̸∈ Cn} ∧ η. Now earlier work shows that Xt = Yt for all t < Tn ∧ Sn, so Sn ≤ Tn. Let n → ∞ to

show that t ≤ η.

4. Finally, we need to show that we get well-defined solutions on each compact. To this end one can show

that if we nest C in another compact C ′, that the number of crossing that X makes from C2 to C1 can

be written as the solution to a SDE with uniformly bounded coefficients, so it is easily to conclude by

Borel-Cantelli that crossings from C to C ′ cannot occur infinitely often.

7 Diffusion processes

It turns out that solutions to SDEs is very much related to martingale problems. Given bounded,

measurable a : Rd → M d×d(R) and b : Rd → Rd with a symmetric and f ∈ C2
b (R), write

Lf(x) :=

d∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x).
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Definition 7.1. X is an L-diffusion if for all f ∈ C2
b (Rd), we have

Mf
t := f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds.

Example 7.2. A restatement of Itô’s formula is that if a = σσT then Xt = σBt + bt is an (a, b)-diffusion.

L-diffusions and SDEs are intimately related. One direction follows from Itô’s almost immediately, and

for the other direction one combines the result of being an L-diffusion for f ≡ x2 together with Itô’s applied

to Xt in order to show that Nt := Xt −X0 −
∫ t

0
b(Xt)ds has the property that [N ]t =

∫ s

0
σ2(Xs)ds and then

we can by hand construct a Brownian motion Bs (check using Lévy’s characterization of Brownian motion!)

that N =
∫ s

0
σ(Xs)dBs.

Theorem 7.3. Suppose that X is a solution to the SDE dXt = σ(Xt)dBt+b(Xt)dt. Let f ∈ C1,2
b (R+×Rd).

Then the process

Mf
t = f(t,Xt)− f(0, X0)−

∫ t

0

(
∂

∂s
+ L

)
f(s,Xs)ds

is a continuous local martingale where a = σσT and L is as defined above. In particular, if σ, b are bounded

then X is an L-diffusion.

It turns out that restarting an L-diffusion at a finite stopping time again gives an L-diffusion.

Theorem 7.4. Let X be an L-diffusion and T a fintie stopping time. Set X̃t = XT+t and F̃t = FT+t. Then

X̃ is an L-diffusion with respect to F̃t.

Proof. Use OST to show that E[(M̃f
t − M̃f

s )1(A ∩ {T ≤ n})] = 0 and then let n → ∞ and use DCT to

conclude.

What’s the relation between L-diffusions and martingale problems?

Lemma 7.5. Let X be an L-diffusion. Then for all f ∈ C1,2
b (R+ × Rd), the process

Mf
t = f(t,Xt)− f(0, X0)−

∫ t

0

(
∂

∂s
+ L

)
f(s,Xs)ds

is a martingale.

Definition 7.6. We say that a is uniformly positive definite (UPD) if there exists ε > 0 such that for all

x, ξ ∈ Rd, we have

(ξ, a(x)ξ) ≥ ε2|ξ|2.

Effectively our earlier results allows us to use SDEs to build (a, b)-diffusions, and then we can use the

lemma above to also get corresponding martingales. As a generalization to the idea of what we have seen in

Lattice Models/Advanced Probability of using Brownian motion to solve boundary value problems to ∆ = 0,

we have the following two theorems.

Theorem 7.7 (Dirichlet problem). Suppose that u ∈ C(D) ∩ C2(D) satisfiesLu+ φ = 0 on D,

u = f on ∂D,

with f ∈ C(∂D), φ ∈ C(D). Then for any L-diffusion X starting from x ∈ D, we have that

u(x) = Ex

[∫ T

0

φ(Xs)ds+ f(XT )

]
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where T = inf{t ≥ 0 : Xt ̸∈ D}. In particular, for all Borel sets A ⊂ D, and B ⊂ ∂D, we have thatEx

[∫ T

0
1(Xs ∈ A)ds

]
=
∫
A
g(x, y)dy

Px(XT ∈ B) =
∫
B
m(x, y)λ(dy)

Theorem 7.8 (Cauchy problem). Assume that f ∈ C2
b (Rd). Let u ∈ C1,2

b (R+ × Rd) satisfy∂u
∂t = Lu on R+ × Rd,

u(0, ·) = fon Rd.

Let p : (0,∞)×Rd×Rd → (∞) be the corresponding heat Then for any L-diffusion X, for all t ∈ R+, x ∈ Rd,

s ≤ t, we have that E[f(Xt) | Fs] = u(t− s,Xs) a.s. In particular

Ex[f(Xt)] = u(t, x) =

∫
Rd

p(t, x, y)f(y)dy.

In fact, X is a Markov process with transition density function p.
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